On the Absence of Solutions of Differential Inequalities with the -Laplacian

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For differential inequalities with the ∞-Laplacian in the principal part, we find conditions for the absence of solutions in unbounded domains. Examples are given that demonstrate the accuracy of these conditions.

About the authors

A. A Kon'kov

Lomonosov Moscow State University, Moscow, 119991, Russia;
RUDN University, Moscow, 117198, Russia

Author for correspondence.
Email: konkov@mech.math.msu.su

References

  1. Crandall M.G., Ishii H., Lions P.-L. User's guide to viscosity solutions of second order partial differential equations // Bull. Amer. Math. Soc. (N.S.). 1992. V. 27. P. 1-67.
  2. Lu G., Wang P. Inhomogeneous infinity Laplace equation // Adv. Math. 2008. V. 217. P. 1838-1868.
  3. Асташова И.В. Единственность решений уравнений второго порядка типа Эмдена-Фаулера // Проблемы мат. анализа. 2021. Т. 109. С. 11-16.
  4. Асташова И.В. Об асимптотическом поведении сингулярных решений уравнений типа Эмдена-Фаулера // Дифференц. уравнения. 2019. Т. 55. № 5. С. 597-606.
  5. Astashova I.V. On asymptotic behavior of blow-up solutions to higher-order differential equations with general nonlinearity // Differential and Difference Equations with Applications. ICDDEA 2017. Springer Proceedings in Mathematics & Statistics / Eds. S. Pinelas, T. Caraballo, P. Kloeden, J. Graef. Cham, 2018. V. 230 P. 1-12.
  6. Baras P., Pierre M. Singularit'es 'eliminables pour des 'equations semilin'eaires // Ann. Inst. Fourier. 1984. V. 34. P. 185-205.
  7. Галахов Е.И. Разрешимость эллиптического уравнения с градиентной нелинейностью // Дифференц. уравнения. 2005. Т. 41. № 5. С. 661-669.
  8. Galakhov E.I. Some nonexistence results for quasilinear elliptic problems // J. Math. Anal. Appl. 2000. V. 252. № 1. P. 256-277.
  9. Галахов Е.И., Салиева О.А., Фино А.З. Отсутствие глобальных слабых решений для эволюционных уравнений с дробным лапласианом // Мат. заметки. 2020. Т. 108. Вып. 6. С. 911-919.
  10. Keller J.B. On solutions of $Delta u=f (u)$ // Comm. Pure Appl. Math. 1957. V. 10. P. 503-510.
  11. Кондратьев В.А., Ландис Е.М. О качественных свойствах решений одного нелинейного уравнения второго порядка // Мат. сб. 1988. V. 135 (177). № 3. С. 346-360.
  12. Kon'kov A.A. On global solutions of the radial $p $-Laplace equation // Nonlin. Anal. 2009. V. 70. P. 3437-3451.
  13. Коньков А.А. О решениях неавтономных обыкновенных дифференциальных уравнений // Изв. РАН. Сер. Мат. 2001. Т. 65. № 2. С. 81-126.
  14. Коньков А.А. О свойствах решений одного класса нелинейных обыкновенных дифференциальных уравнений // Тр. семинара имени И.Г. Петровского. 2007. Т. 26. С. 195-222.
  15. Корпусов М.О., Матвеева А.К. О критических показателях для слабых решений задачи Коши для одного нелинейного уравнения составного типа // Изв. РАН. Сер. мат. 2021. Т. 85. № 4. С. 96-136.
  16. Корпусов М.О., Панин А.А. О непродолжаемом решении и разрушении решения одномерного уравнения ионно-звуковых волн в плазме // Мат. заметки. 2017. Т. 102. Вып. 3. С. 383-395.
  17. Корпусов М.О., Шафир Р.С. О разрушении решений задач Коши для нелинейных уравнений теории сегнетоэлектричества // Журн. теор. и мат. физики. 2022. Т. 212. № 3. С. 327-339.
  18. Митидиери Э., Похожаев С.И. Априорные оценки и отсутствие решений нелинейных уравнений и неравенств в частных производных // Тр. Мат. ин-та имени В.А. Стеклова. 2001. Т. 234. С. 3-383.
  19. Osserman R. On the inequality $Delta uge f (u)$ // Pacific J. Math. 1957. V. 7. P. 1641-1647.
  20. Mi L. Blow-up rates of large solutions for infinity Laplace equations // Appl. Math. Comp. 2017. V. 298. P. 36-44.
  21. Mohammed A., Mohammed S. Boundary blow-up solutions to degenerate elliptic equations with non-monotone inhomogeneous terms // Nonlin. Anal. 2012. V. 75. P. 3249-3261.
  22. Wan H. The exact asymptotic behavior of boundary blow-up solutions to infinity Laplacian equations // Z. Angew. Math. Phys. 2016. V. 67. № 97. P. 1-14.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».