Behavior of Trajectories of a Four-Dimensional Model of HIV Infection

Cover Page

Cite item

Full Text

Abstract

A model of interaction between the human immunodeficiency virus and the human immune system is considered. Equilibria in the state space of the system and their stability are analyzed, and the ultimate bounds of the trajectories are constructed. It has been proved that the local asymptotic stability of the equilibrium corresponding to the absence of disease is equivalent to its global asymptotic stability. The loss of stability is shown to be caused by a transcritical bifurcation.

About the authors

A. N. Kanatnikov

Bauman Moscow State Technical University, Moscow, 105005, Russia

Email: skipper@bmstu.ru

O. S. Tkacheva

Bauman Moscow State Technical University, Moscow, 105005, Russia

Author for correspondence.
Email: tkolga17@gmail.com

References

  1. Kirschner D., Lenhart S., Serbin S. Dynamics of HIV infection of CD4+T cells // Math. Biosci. 1993. V. 114. P. 81-125.
  2. Perelson A.S., Nelson P.W. Mathematical analysis of HIV-1 dynamics in vivo // SIAM Rev. 1999. V. 41. P. 3-44.
  3. Elaiw A.M. Global properties of a class of HIV models // Nonlin. Anal. Real World Appl. 2010. V. 11. P. 2253-2263.
  4. Hadjiandreou M., Conejeros R., Vassiliadis V.S. Towards a long-term model construction for the dynamic simulation of HIV infection // Math. Biosci. Eng. 2007. V. 4. P. 489-504.
  5. De Leenheer P., Smith H.L. Virus dynamics: a global analysis // SIAM J. Appl. Math. 2003. V. 63. P. 1313-1327.
  6. Nowak M., May R.M. Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford, 2000.
  7. Dehghan M., Nasri M., Razvan M.R. Global stability of a deterministic model for HIV infection in vivo // Chaos, Solitons and Fractals. 2007. V. 34. P. 1225-1238.
  8. Kirschner D., Lenhart S., Serbin S. Optimal control of the chemotherapy of HIV // J. Math. Biol. 1997. V. 35. P. 775-792.
  9. Малинецкий Г.Г. Математические основы синергетики. М., 2017.
  10. Крищенко А.П. Локализация инвариантных компактов динамических систем // Дифференц. уравнения. 2005. V. 41. № 12. С. 1597-1604.
  11. Канатников А.Н., Крищенко А.П. Инвариантные компакты динамических систем. М., 2011.
  12. Крищенко А.П. Поведение траекторий автономных систем // Дифференц. уравнения. 2018. Т. 54. № 11. С. 1445-1450.
  13. Халил Х.К. Нелинейные системы. М.; Ижевск, 2009.
  14. Starkov K.E., Kanatnikov A.N. Eradication conditions of infected cell populations in the 7-order HIV model with viral mutations and related results // Math. 2021. V. 9. Art. 1862.
  15. Kanatnikov A.N., Krishchenko A.P. Iteration procedure of localization in a chronic Leukemia model // AIP Conf. Proc. 2020. Art. 210004-1.
  16. Четаев Н.Г. Устойчивость движения. М., 1965.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).