Analysis of a Multipoint Boundary Value Problem for a Nonlinear Matrix Differential Equation

Capa

Citar

Texto integral

Resumo

For a nonlinear differential matrix equation, we study a multipoint boundary value
problem by a constructive method of regularization over the linear part of the equation using
the corresponding fundamental matrices. Based on the initial data of the problem, sufficient
conditions for its unique solvability are obtained. Iterative algorithms containing relatively
simple computational procedures are proposed for constructing a solution. Effective estimates
are given that characterize the rate of convergence of the iteration sequence to the solution, as
well as estimates of the solution localization domain.

Sobre autores

A. Bondarev

Belarusian–Russian University

Email: alex-bondarev@tut.by
Mogilev, 212000 Belarus

V. Laptinskiy

Belarusian–Russian University

Autor responsável pela correspondência
Email: lavani@tut.by
Mogilev, 212000 Belarus

Bibliografia

  1. Лаптинский В.Н. Конструктивный анализ управляемых колебательных систем. Минск, 1998.
  2. Забрейко П.П., Кошелев А.И., Красносельский М.А., Михлин С.Г., Раковщик Л.С., Стеценко В.Я. Интегральные уравнения. М., 1968.
  3. Канторович Л.В., Акилов Г.П. Функциональный анализ. М., 1977.
  4. Murty K.N., Howell G.W., Sivasundaram S. Two (multi) point nonlinear Lyapunov systems - existence and uniqueness // J. Math. Anal. and Appl. 1992. V. 167. P. 505-515.
  5. Лаптинский В.Н. О периодических решениях нелинейных матричных дифференциальных уравнений // Весцi АН Беларусi. Сер. фiз.-мат. навук. 1997. № 4. С. 14-18.
  6. Бондарев А.Н., Лаптинский В.Н. Многоточечная краевая задача для уравнения Ляпунова в случае сильного вырождения краевых условий // Дифференц. уравнения. 2011. Т. 47. № 6. С. 776-784.
  7. Бондарев А.Н., Лаптинский В.Н. Многоточечная краевая задача для уравнения Ляпунова в случае слабого вырождения краевых условий // Дифференц. уравнения. 2019. Т. 55. № 3. С. 423-427.
  8. Демидович Б.П. Лекции по математической теории устойчивости. М., 1967.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).