О гладкости потенциала Пуассона для параболических систем второго порядка на плоскости

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается решение задачи Коши в полосе на плоскости для однородной параболической системы второго порядка. Коэффициенты системы удовлетворяют двойному условию Дини. Начальная функция непрерывна и ограничена вместе со своими первой и второй производными. С помощью потенциала Пуассона исследуется характер гладкости этого решения и доказываются соответствующие оценки.

Об авторах

Е. А. Бадерко

Московский государственный университет имени М.В. Ломоносова;Московский центр фундаментальной и прикладной математики

Email: baderko.ea@yandex.ru
Москва, Россия

К. Д. Федоров

Московский государственный университет имени М.В. Ломоносова;Московский центр фундаментальной и прикладной математики

Автор, ответственный за переписку.
Email: konstantin-dubna@mail.ru
Москва, Россия

Список литературы

  1. Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. М., 1967.
  2. Бадерко Е.А., Черепова М.Ф. О единственности решения задачи Коши для параболических систем // Дифференц. уравнения. 2019. Т. 55. № 6. С. 822-830.
  3. Солонников В.А. О краевых задачах для линейных параболических систем дифференциальных уравнений общего вида // Тр. Мат. ин-та им. В.А. Стеклова. 1965. Т. 83. С. 3-163.
  4. Камынин Л.И. О решении методом потенциалов основных краевых задач для одномерного параболического уравнения 2-го порядка // Сиб. мат. журн. 1974. Т. 15. № 4. C. 806-834.
  5. Бадерко Е.А., Сахаров С.И. Потенциал Пуассона в первой начально-краевой задаче для параболической системы в полуограниченной области на плоскости // Дифференц. уравнения. 2022. Т. 58. № 10. С. 1333-1343.
  6. Arnese G. Su alcune proprieta dell'integrale di Poisson relativo ad una equazione parabolica di ordine $2m$ a coefficienti non costanti // Ann. di Mat. Pura ed Appl. 1971. V. 91. № 1. P. 1-16.
  7. Дзядык В.К. Введение в теорию равномерного приближения функций полиномами. М., 1977.
  8. Петровский И.Г. О проблеме Коши для систем линейных уравнений с частными производными в области неаналитических функций // Бюлл. Моск. гос. ун-та. Секция А. 1938. Т. 1. № 7. C. 1-72.
  9. Фридман А. Уравнения с частными производными параболического типа. М., 1968.
  10. Бадерко Е.А. О потенциалах для $2p $-параболических уравнений // Дифференц. уравнения. 1983. Т. 19. № 1. С. 9-18.
  11. Зейнеддин М. Гладкость потенциала простого слоя для параболической системы второго порядка в классах Дини // Деп. ВИНИТИ РАН. 16.04.92. № 1294-В92.
  12. Зейнеддин М. О потенциале простого слоя для параболической системы в классах Дини: дис.... канд. физ.-мат. наук. М., 1992.
  13. Архипов Г.И., Садовничий В.А., Чубариков В.Н. Лекции по математическому анализу. М., 2008.
  14. Богачев В.И., Смолянов О.Г. Действительный и функциональный анализ: университетский курс. М.; Ижевск, 2020.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».