Cauchy Problem for the Nonlinear Liouville Equation in the Class of Periodic Infinite-Gap Functions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The inverse spectral problem method is used to integrate the nonlinear Liouville equation in the class of periodic infinite-gap functions. The evolution of the spectral data of the periodic Dirac operator whose coefficient is a solution of the nonlinear Liouville equation is introduced. The solvability of the Cauchy problem for an infinite system of Dubrovin differential equations in the class of three times continuously differentiable periodic infinite-gap functions is proved. It is shown that the sum of a uniformly convergent function series constructed by solving the Dubrovin system of equations and using the first trace formula satisfies the Liouville equation.

About the authors

A. B Khasanov

Samarkand State University, Samarkand, 140104, Uzbekistan

Email: ahasanov2002@mail.ru

Kh. N Normurodov

Samarkand State University, Samarkand, 140104, Uzbekistan

Email: normurodov.96@bk.ru

U. O Khudaerov

Samarkand State Institute of Architecture and Construction, Samarkand, 140143, Uzbekistan

Author for correspondence.
Email: xudayorov.2022@bk.ru

References

  1. Жибер А.В., Муртозина Р.Д., Хабибуллин И.Т., Шабат А.Б. Характеристическое кольцо Ли и нелинейные интегрируемые уравнения. М.; Ижевск, 2012.
  2. Жибер А.В., Ибрагимов Н.Х., Шабат А.Б. Уравнения типа Лиувилля // Докл. АН СССР. 1979. Т. 249. № 1. С. 26-29.
  3. Итс А.Р., Матвеев В.Б. Операторы Шрёдингера с конечнозонным спектром и N-солитонные решения уравнения Кортевега-де Фриза // Журн. теор. и мат. физики. 1975. Т. 23. № 1. С. 51-68.
  4. Дубровин Б.А., Новиков С.П. Периодический и условно периодический аналоги многосолитонных решений уравнения Кортевега-де Фриза // Журн. эксп. и теор. физики. 1974. Т. 67. № 12. С. 2131-2143.
  5. Итс А.Р., Котляров В.П. Явные формулы для решений нелинейного уравнения Шрёдингера // Докл. АН УССР. Сер. А. 1976. № 11. С. 965-968.
  6. Смирнов А.О. Эллиптические решения нелинейного уравнения Шрёдингера и модифицированного уравнения Кортевега-де Фриза // Мат. сб. 1994. Т. 185. № 8. С. 103-114.
  7. Матвеев В.Б., Смирнов А.О. Решения типа ''волн-убийц'' уравнений иерархии Абловица-Каупа-Ньюэлла-Сигура: единый подход // Журн. теор. и мат. физики. 2016. Т. 186. № 2. С. 191-220.
  8. Матвеев В.Б., Смирнов А.О. Двухфазные периодические решения уравнений из АКНС иерархии // Зап. науч. сем. ПОМИ. 2018. Т. 473. С. 205-227.
  9. Митрапольский Ю.А., Боголюбов Н.Н. (мл.), Прикарпатский А.К., Самойленко В.Г. Интегрируемые динамические системы: спектральные и дифференциально-геометрические аспекты. Киев, 1987.
  10. Захаров В.Е., Манаков С.В., Новиков С.П., Питаевский Л.П. Теория солитонов: метод обратной задачи. М., 1980.
  11. Matveev V.B. 30 years of finite-gap integration theory // Philos. Trans. of the Royal Soc. A. Math. Phys. and Eng. Sci. 2008. V. 366. P. 837-875.
  12. Ince E.L. A proof of the impossibility of the coexistence of two Mathieu functions // Proc. Cambridge Phil. Soc. 1922. V. 21. P. 117-120.
  13. Джаков П.Б., Митягин Б.С. Зоны неустойчивости одномерных периодических операторов Шрёдингера и Дирака // Успехи мат. наук. 2006. Т. 61. № 4 (370). С. 77-182.
  14. Маннонов Г.А., Хасанов А.Б. Задача Коши для нелинейного уравнения Хирота в классе периодических бесконечнозонных функций // Алгебра и анализ. 2022. Т. 34. № 5. С. 139-172.
  15. Хасанов А.Б., Нормуродов Х.Н., Худаёров У.О. Интегрирование модифицированного уравнения Кортевега-де Фриза-синус-Гордона в классе периодических бесконечнозонных функций // Журн. теор. и мат. физики. 2023. Т. 214. № 2. С. 198-210.
  16. Grinevich P.G., Taimanov I.A. Spectral conservation laws for periodic nonlinear equations of the Melnikov type // Amer. Math. Soc. Trans. Ser. 2. V. 224. / Eds. V.M. Buchstaer, I.M. Krichever. Providence, 2008. P. 125-138.
  17. Хасанов А.Б., Хасанов М.М. Интегрирование нелинейного уравнения Шрёдингера с дополнительным членом в классе периодических функций // Журн. теор. и мат. физики. 2019. Т. 199. № 1. С. 60-68.
  18. Khasanov A.B., Khasanov T.G. Integration of a nonlinear Korteweg-de Vries equation with a loaded term and a source // J. of Appl. and Industr. Math. 2022. V. 16. № 2. P. 227-239.
  19. Khasanov A.B., Allanazarova T.Z. On the modified Korteweg-de Vries equation with loaded term // Ukrainian Math. J. 2022. V. 73. № 11. P. 1783-1809.
  20. Муминов У.Б., Хасанов А.Б. Задача Коши для дефокусирующего нелинейного уравнения Шредингера с нагруженным членом // Мат. тр. 2022. Т. 25. № 1. С. 102-133.
  21. Бабажанов Б.А., Хасанов А.Б. О периодической оценке Тоды с интегральным источником // Теор. и мат. физика. 2015. Т. 184. № 2. С. 1114-1128.
  22. Хасанов А.Б., Яхшимуратов А.Б. Почти-периодичность бесконечномерных потенциалов оператора Дирака // Докл. РАН. 1996. Т. 350. № 2. P. 746-748.
  23. Lax P. Almost periodic solutions of the KdV equation // SIAM Rev. 1976. V. 18. № 3. P. 351-375.
  24. McKean H., Trubowitz E. Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points// Comm. Pure Appl. Math. 1976. V. 29. P. 143-226.
  25. Левитан Б.М., Саргсян И.С. Операторы Штурма-Лиувилля и Дирака. М., 1988.
  26. Мисюра Т.В. Характеристика спектров периодической и антипериодической краевых задач, порождаемых операцией Дирака. I // Теория функций, функциональный анализ и их приложения. Т. 30. / Под peд. В.А. Марченко. Харьков, 1978. С. 90-101}
  27. Мисюра Т.В. Характеристика спектров периодической и антипериодической краевых задач, порождаемых операцией Дирака. II // Теория функций, функциональный анализ и их приложения. Т. 31. / Под peд. В.А. Марченко. Харьков, 1979. С. 102-109.
  28. Хасанов А.Б., Яхшимуратов А.Б. Аналог обратной теоремы Г. Борга для оператора Дирака // Узб. мат. журн. 2000. № 3-4. С. 40-46.
  29. Хасанов А.Б., Ибрагимов А.М. Об обратной задаче для оператора Дирака с периодическим потенциалом // Узб. мат. журн. 2001. № 3-4. С. 48-55.
  30. Currie S., Roth T., Watson B. Borg's periodicity theorems for first-order self-adjoint systems with complex potentials // Proc. Edinb. Math. Soc. 2017. V. 60. № 3. P. 615-633.
  31. Grebert B., Guillot J.C. Gap of one-dimensional periodic AKNS systems // Forum Math. 1993. V. 5. № 5. P. 459-504.
  32. Korotayev E., Mokeev D. Dubrovin equation for periodic Dirac operator on the half-line // Appl. Anal. 2020. V. 101. № 1. P. 1-29.
  33. Trubowtz E. The inverse problem for periodic potentials // Comm. Pure. Appl. Math. 1977. V. 30. P. 321-337.
  34. Хасанов А.Б., Яхшимуратов А.Б. Обратная задача на полулинии для оператора Штурма-Лиувилля с периодическим потенциалом // Дифференц. уравнения. 2015. Т. 51. № 1. P. 23-32.
  35. Бабаджанов Б.А., Хасанов А.Б., Яхшимуратов А.Б. Об обратной задаче для квадратичного пучка операторов Штурма-Лиувилля с периодическим потенциалом // Дифференц. уравнения. 2005. Т. 41. № 3. P. 298-305.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».