About the seminar on problems of nonlinear dynamics and control at Moscow State University named after M.V. Lomonosov

Cover Page

Cite item

Abstract

Ниже публикуются краткие аннотации докладов, состоявшихся в осеннем семестре 2023 г. (предыдущее сообщение о работе семинара дано в журнале “Дифференц. уравнения”. 2023. Т. 59. № 8; за дополнительной информацией обращаться по адресу: deq@cs.msu.ru)[7]

Full Text

О семинаре по проблемам нелинейной динамики и управления при Московском государственном университете имени М.В. Ломоносова1

А. В. Ильин, А. С. Фурсов, Ю. М. Мосолова (МГУ ВМК, Москва, Россия) О задаче стабилизации переключаемой интервальной линейной системы с соизмеримыми запаздываниями 18.12.2023

В настоящей работе исследуется задача цифровой стабилизации переключаемой интервальной линейной системы в случае, когда её режимы имеют различные запаздывания в управлении, а именно, рассматривается непрерывная скалярная переключаемая интервальная линейная система с соизмеримыми запаздываниями в управлении

x ˙ (t)=[ A σ ]x(t)+[ b σ ]u(t θ σ ),y(t)=[ c σ ]x(t),σ S 0,γ ,t0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaacaaIOaGaamiDaiaaiM cacaaI9aGaaG4waiaadgeadaWgaaWcbaGaeq4Wdmhabeaakiaai2fa caWG4bGaaGikaiaadshacaaIPaGaey4kaSIaaG4waiaadkgadaWgaa WcbaGaeq4Wdmhabeaakiaai2facaWG1bGaaGikaiaadshacqGHsisl cqaH4oqCdaWgaaWcbaGaeq4WdmhabeaakiaaiMcacaaISaGaaGzbVl aadMhacaaIOaGaamiDaiaaiMcacaaI9aGaaG4waiaadogadaWgaaWc baGaeq4Wdmhabeaakiaai2facaWG4bGaaGikaiaadshacaaIPaGaaG ilaiaaywW7cqaHdpWCcqGHiiIZcaWGtbWaaSbaaSqaaiaaicdacaaI SaGaeq4SdCgabeaakiaaiYcacaaMf8UaamiDaiabgwMiZkaaicdaca aISaaaaa@69E2@                        (1)

 где σ: + I={1,,m} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHdpWCcaaI6aWefv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaWgaaWcbaGaey4k aScabeaakiabgkziUkaadMeacaaI9aGaaG4EaiaaigdacaaISaGaeS OjGSKaaGilaiaad2gacaaI9baaaa@49DC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  полунепрерывная справа кусочно-постоянная функция (ненаблюдаемый переключающий сигнал); S 0,γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGtbWaaSbaaSqaaiaaicdacaaISa Gaeq4SdCgabeaaaaa@35D8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  множество переключающих сигналов σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHdpWCaaa@3380@ , точки разрыва которых принадлежат множеству {lγ} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI7bGaamiBaiabeo7aNjaai2haaa a@3661@ , γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHZoWzaaa@3364@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  некоторое положительное число, а l=0,1,2,... MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGSbGaaGypaiaaicdacaaISaGaaG ymaiaaiYcacaaIYaGaaGilaiaai6cacaaIUaGaaGOlaaaa@39F0@ ; x n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4bGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaahaaWcbeqaaiaa d6gaaaaaaa@4015@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  вектор состояния; y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuaaa@3EF6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  измеряемый скалярный выход; u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuaaa@3EF2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  управляющий вход; [ A σ ]=[A]σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaamyqamaaBaaaleaacqaHdp WCaeqaaOGaaGyxaiaai2dacaaIBbGaamyqaiaai2facqWIyiYBcqaH dpWCaaa@3C9E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  композиция отображения [A]:I{[ A 1 ],,[ A m ]} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaamyqaiaai2facaaI6aGaam ysaiabgkziUkaaiUhacaaIBbGaamyqamaaBaaaleaacaaIXaaabeaa kiaai2facaaISaGaeSOjGSKaaGilaiaaiUfacaWGbbWaaSbaaSqaai aad2gaaeqaaOGaaGyxaiaai2haaaa@43A5@  и переключающего сигнала σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHdpWCaaa@3380@ ; [ b σ ]=[b]σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaamOyamaaBaaaleaacqaHdp WCaeqaaOGaaGyxaiaai2dacaaIBbGaamOyaiaai2facqWIyiYBcqaH dpWCaaa@3CE0@ , [ c σ ]=[c]σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaam4yamaaBaaaleaacqaHdp WCaeqaaOGaaGyxaiaai2dacaaIBbGaam4yaiaai2facqWIyiYBcqaH dpWCaaa@3CE2@  и θ σ =θσ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH4oqCdaWgaaWcbaGaeq4Wdmhabe aakiaai2dacqaH4oqCcqWIyiYBcqaHdpWCaaa@3AE6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  аналогичные композиции для отображений [b]:I{[ b 1 ],,[ b m ]} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaamOyaiaai2facaaI6aGaam ysaiabgkziUkaaiUhacaaIBbGaamOyamaaBaaaleaacaaIXaaabeaa kiaai2facaaISaGaeSOjGSKaaGilaiaaiUfacaWGIbWaaSbaaSqaai aad2gaaeqaaOGaaGyxaiaai2haaaa@4408@  и [c]:I{[ c 1 ],,[ c m ]} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaam4yaiaai2facaaI6aGaam ysaiabgkziUkaaiUhacaaIBbGaam4yamaaBaaaleaacaaIXaaabeaa kiaai2facaaISaGaeSOjGSKaaGilaiaaiUfacaWGJbWaaSbaaSqaai aad2gaaeqaaOGaaGyxaiaai2haaaa@440B@ , θ:I{ θ 1 ,, θ m } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH4oqCcaaI6aGaamysaiabgkziUk aaiUhacqaH4oqCdaWgaaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKa aGilaiabeI7aXnaaBaaaleaacaWGTbaabeaakiaai2haaaa@4111@  ( [ A i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaamyqamaaBaaaleaacaWGPb aabeaakiaai2faaaa@3573@ , [ b i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaamOyamaaBaaaleaacaWGPb aabeaakiaai2faaaa@3594@ , [ c i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaam4yamaaBaaaleaacaWGPb aabeaakiaai2faaaa@3595@  ( i= 1,m ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGTbaaaaaa@35E6@  ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  интервальные матрицы соответствующих размеров). Здесь θ i >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH4oqCdaWgaaWcbaGaamyAaaqaba GccaaI+aGaaGimaaaa@3619@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  величины постоянных запаздываний, причём θ i / θ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH4oqCdaWgaaWcbaGaamyAaaqaba GccaaIVaGaeqiUde3aaSbaaSqaaiaadQgaaeqaaaaa@3821@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  рациональное число для любой пары i,jI MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGPbGaaGilaiaadQgacqGHiiIZca WGjbaaaa@36A2@ .

Значение функции σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHdpWCaaa@3380@  в каждый момент времени определяет активный режим переключаемой системы (1), описываемый интервальной линейной стационарной системой с запаздыванием в управлении

x ˙ (t)=[ A i ]x(t)+[ b i ]u(t θ i ),y(t)=[ c i ]x(t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaacaaIOaGaamiDaiaaiM cacaaI9aGaaG4waiaadgeadaWgaaWcbaGaamyAaaqabaGccaaIDbGa amiEaiaaiIcacaWG0bGaaGykaiabgUcaRiaaiUfacaWGIbWaaSbaaS qaaiaadMgaaeqaaOGaaGyxaiaadwhacaaIOaGaamiDaiabgkHiTiab eI7aXnaaBaaaleaacaWGPbaabeaakiaaiMcacaaISaGaaGzbVlaadM hacaaIOaGaamiDaiaaiMcacaaI9aGaaG4waiaadogadaWgaaWcbaGa amyAaaqabaGccaaIDbGaamiEaiaaiIcacaWG0bGaaGykaiaai6caaa a@5723@

Решением уравнения состояния системы (1) при фиксированных тройках ( c i , A i , b i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaam4yamaaBaaaleaacaWGPb aabeaakiaaiYcacaWGbbWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaa dkgadaWgaaWcbaGaamyAaaqabaGccaaIPaaaaa@3A8F@  ( c i [ c i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGJbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI4SaaG4waiaadogadaWgaaWcbaGaamyAaaqabaGccaaIDbaa aa@3925@ , A i [ A i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGbbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI4SaaG4waiaadgeadaWgaaWcbaGaamyAaaqabaGccaaIDbaa aa@38E1@ , b i [ b i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI4SaaG4waiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIDbaa aa@3923@ , i= 1,m ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGTbaaaaaa@35E6@  ), заданном управлении u(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadshacaaIPaaaaa@3515@  (считаем, что u(t)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaey yyIORaaGimaaaa@3798@  при t0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyizImQaaGimaaaa@3525@  ), переключающем сигнале σ S 0,γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHdpWCcqGHiiIZcaWGtbWaaSbaaS qaaiaaicdacaaISaGaeq4SdCgabeaaaaa@391F@  и начальном условии x(0)= x 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4bGaaGikaiaaicdacaaIPaGaaG ypaiaadIhadaWgaaWcbaGaaGimaaqabaaaaa@3783@  является решение соответствующей линейной нестационарной системы с запаздыванием

x ˙ = A σ(t) x+ b σ(t) u(t θ σ(t) ),x(0)= x 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaacaaI9aGaamyqamaaBa aaleaacqaHdpWCcaaIOaGaamiDaiaaiMcaaeqaaOGaamiEaiabgUca RiaadkgadaWgaaWcbaGaeq4WdmNaaGikaiaadshacaaIPaaabeaaki aadwhacaaIOaGaamiDaiabgkHiTiabeI7aXnaaBaaaleaacqaHdpWC caaIOaGaamiDaiaaiMcaaeqaaOGaaGykaiaaiYcacaaMf8UaamiEai aaiIcacaaIWaGaaGykaiaai2dacaWG4bWaaSbaaSqaaiaaicdaaeqa aOGaaGOlaaaa@52E2@

Требуется для переключаемой линейной системы (1) с заданным числом γ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHZoWzcaaI+aGaaGimaaaa@34E6@  и ненаблюдаемыми переключающими сигналами σ S 0,γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHdpWCcqGHiiIZcaWGtbWaaSbaaS qaaiaaicdacaaISaGaeq4SdCgabeaaaaa@391F@  построить цифровой регулятор вида

u(t)= j=0 [tT] u[jT]S(tjT),S(t)= 1, t[0,T), 0, t[0,T), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaaG ypamaaqahabeWcbaGaamOAaiaai2dacaaIWaaabaGaaG4waiaadsha caWGubGaaGyxaaqdcqGHris5aOGaamyDaiaaiUfacaWGQbGaamivai aai2facaWGtbGaaGikaiaadshacqGHsislcaWGQbGaamivaiaaiMca caaISaGaaGzbVlaadofacaaIOaGaamiDaiaaiMcacaaI9aWaaiqaae aafaqabeGacaaabaGaaGymaiaaiYcaaeaacaWG0bGaeyicI4SaaG4w aiaaicdacaaISaGaamivaiaaiMcacaaISaaabaGaaGimaiaaiYcaae aacaWG0bGaeyycI8SaaG4waiaaicdacaaISaGaamivaiaaiMcacaaI SaaaaaGaay5Eaaaaaa@6126@                                     (2)

v[(l+1)T]=Qv[lT]+qy[lT],u[lT]=Hv[lT]+hy[lT],v[0]= v 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bGaaG4waiaaiIcacaWGSbGaey 4kaSIaaGymaiaaiMcacaWGubGaaGyxaiaai2dacaWGrbGaamODaiaa iUfacaWGSbGaamivaiaai2facqGHRaWkcaWGXbGaamyEaiaaiUfaca WGSbGaamivaiaai2facaaISaGaaGzbVlaadwhacaaIBbGaamiBaiaa dsfacaaIDbGaaGypaiaadIeacaWG2bGaaG4waiaadYgacaWGubGaaG yxaiabgUcaRiaadIgacaWG5bGaaG4waiaadYgacaWGubGaaGyxaiaa iYcacaaMf8UaamODaiaaiUfacaaIWaGaaGyxaiaai2dacaWG2bWaaS baaSqaaiaaicdaaeqaaOGaaGilaaaa@6273@                       (3)

 обеспечивающий глобальную равномерную асимптотическую устойчивость замкнутой непрерывно-дискретной системы

x ˙ (t)=[ A σ ]x(t)+[ b σ ]u(t θ σ ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaacaaIOaGaamiDaiaaiM cacaaI9aGaaG4waiaadgeadaWgaaWcbaGaeq4Wdmhabeaakiaai2fa caWG4bGaaGikaiaadshacaaIPaGaey4kaSIaaG4waiaadkgadaWgaa WcbaGaeq4Wdmhabeaakiaai2facaWG1bGaaGikaiaadshacqGHsisl cqaH4oqCdaWgaaWcbaGaeq4WdmhabeaakiaaiMcacaaISaaaaa@4C06@

v[(l+1)T]=Qv[lT]+q[ c σ ]x[lT],σ(t) S 0,γ ,x(0)= x 0 ,v[0]= v 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bGaaG4waiaaiIcacaWGSbGaey 4kaSIaaGymaiaaiMcacaWGubGaaGyxaiaai2dacaWGrbGaamODaiaa iUfacaWGSbGaamivaiaai2facqGHRaWkcaWGXbGaaG4waiaadogada WgaaWcbaGaeq4Wdmhabeaakiaai2facaWG4bGaaG4waiaadYgacaWG ubGaaGyxaiaaiYcacaaMf8Uaeq4WdmNaaGikaiaadshacaaIPaGaey icI4Saam4uamaaBaaaleaacaaIWaGaaGilaiabeo7aNbqabaGccaaI SaGaaGzbVlaadIhacaaIOaGaaGimaiaaiMcacaaI9aGaamiEamaaBa aaleaacaaIWaaabeaakiaaiYcacaaMf8UaamODaiaaiUfacaaIWaGa aGyxaiaai2dacaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaaaa@67E5@                     (4)

 где

utθijtθiTHvlT+hcσxlTStθijTеслиtθi,0,если0t<θi.

 Система (4) записана при условии, что моменты времени t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0baaaa@32B6@  и lT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGSbGaamivaaaa@3387@  согласованы, l=[tT] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGSbGaaGypaiaaiUfacaWG0bGaam ivaiaai2faaaa@3713@ , т.е.

lTt<(l+1)T,l=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGSbGaamivaiabgsMiJkaadshaca aI8aGaaGikaiaadYgacqGHRaWkcaaIXaGaaGykaiaadsfacaaISaGa aGzbVlaadYgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiablAcilb aa@43C8@

Здесь T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  период квантования по времени t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0baaaa@32B6@  (считаем, что T<γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubGaaGipaiabeo7aNbaa@3503@ , существует l 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGSbWaaSbaaSqaaiaaicdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@3FCD@  такое, что γ= l 0 T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHZoWzcaaI9aGaamiBamaaBaaale aacaaIWaaabeaakiaadsfaaaa@36E5@ , и для любого i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGPbaaaa@32AB@  найдётся такое l i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGSbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@4001@ , что θ i = l i T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH4oqCdaWgaaWcbaGaamyAaaqaba GccaaI9aGaamiBamaaBaaaleaacaWGPbaabeaakiaadsfaaaa@384C@  ), [] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaeyyXICTaaGyxaaaa@35D3@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  целая часть действительного числа, Q R r×r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGrbGaeyicI4SaamOuamaaCaaale qabaGaamOCaiabgEna0kaadkhaaaaaaa@3920@ , q R r×1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGXbGaeyicI4SaamOuamaaCaaale qabaGaamOCaiabgEna0kaaigdaaaaaaa@3904@ , H R 1×r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGibGaeyicI4SaamOuamaaCaaale qabaGaaGymaiabgEna0kaadkhaaaaaaa@38DB@ , hR MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObGaeyicI4SaamOuaaaa@3505@  ( r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGYbaaaa@32B4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  порядок регулятора), u[] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaG4waiabgwSixlaai2faaa a@36CD@ , y[] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bGaaG4waiabgwSixlaai2faaa a@36D1@ , v[] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bGaaG4waiabgwSixlaai2faaa a@36CE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  дискретные функции, определённые на последовательности {lT} l=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI7bGaamiBaiaadsfacaaI9bWaa0 baaSqaaiaadYgacaaI9aGaaGimaaqaaiabg6HiLcaaaaa@39A3@ , формирующий элемент представлен фиксатором нулевого порядка [1, c. 25].

Замкнутую непрерывно-дискретную систему (4) называем глобально равномерно асимптотически устойчивой, а регулятор (2), (3) стабилизирующим, если при любых фиксированных тройках ( c i , A i , b i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaam4yamaaBaaaleaacaWGPb aabeaakiaaiYcacaWGbbWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaa dkgadaWgaaWcbaGaamyAaaqabaGccaaIPaaaaa@3A8F@  ( c i [ c i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGJbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI4SaaG4waiaadogadaWgaaWcbaGaamyAaaqabaGccaaIDbaa aa@3925@ , A i [ A i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGbbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI4SaaG4waiaadgeadaWgaaWcbaGaamyAaaqabaGccaaIDbaa aa@38E1@ , b i [ b i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI4SaaG4waiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIDbaa aa@3923@ , i= 1,m ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGTbaaaaaa@35E6@  ) для любых x(0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4bGaaGikaiaaicdacaaIPaaaaa@34D9@ , v[0] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bGaaG4waiaaicdacaaIDbaaaa@353E@  и σ S 0,γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHdpWCcqGHiiIZcaWGtbWaaSbaaS qaaiaaicdacaaISaGaeq4SdCgabeaaaaa@391F@  для соответствующего решения выполнено:

x(t) υ[lT] 0приt+,l= t T . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaqbdaqaauaabeqaceaaaeaacaWG4b GaaGikaiaadshacaaIPaaabaGaeqyXduNaaG4waiaadYgacaWGubGa aGyxaaaaaiaawMa7caGLkWoacqGHsgIRcaaIWaGaaGzbVlaab+dbca qGarGaaeioeiaaysW7caWG0bGaeyOKH4Qaey4kaSIaeyOhIuQaaGil aiaaywW7caWGSbGaaGypamaadmaabaWaaSaaaeaacaWG0baabaGaam ivaaaaaiaawUfacaGLDbaacaaIUaaaaa@5378@

Для решения поставленной задачи предлагается применять подходы, разработанные в статьях [2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 4], где исследовались проблемы цифровой стабилизации переключаемых интервальных линейных систем и переключаемых линейных систем с запаздыванием в управлении, одинаковом для всех режимов рассматриваемой переключаемой системы. Для решения первой проблемы в [3, 4] используется метод дискретизации переключаемой интервальной системы с дальнейшим поиском динамического дискретного регулятора на основе линейных матричных неравенств. В работе [2] предлагается подход для решения второй проблемы, включающий два основных шага MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  переход от исходной непрерывной системы к её точной дискретной модели (вообще говоря, более высокого динамического порядка) и поиск дискретного динамического регулятора для полученной переключаемой дискретной системы. Модифицируя указанные подходы с учётом наличия соизмеримых запаздываний в режимах исходной переключаемой системы (1), разработана общая схема построения цифрового регулятора (2), (3), включающая следующие основные шаги:

1) переход от непрерывной системы (1) к её точной дискретной модели с учётом, что на её входе используется фиксатор нулевого порядка (точная дискретная модель фактически представляет собой семейство переключаемых дискретных систем с режимами, описываемыми системами разностных уравнений, вообще говоря, различных динамических порядков, не содержащих запаздываний);

2) построение интервального расширения для полученной дискретной модели;

3) приведение режимов полученной переключаемой линейной интервальной дискретной системы к единому порядку на основе метода расширения динамического порядка [5, c. 205];

4) построение процедуры численного поиска стабилизирующего дискретного регулятора вида (3) с использованием достаточного условия устойчивости переключаемых интервальных дискретных систем на основе метода функций Ляпунова [3].

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках реализации программы Московского центра фундаментальной и прикладной математики по соглашению MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  075-15-2019-1621.

Литература. 1. Поляков, К.Ю. Основы теории цифровых систем управления: учеб. пособие / К.Ю. Поляков. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  СПб. : СПбГМТУ, 2002. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  154 с. 2. Фурсов, А.С. Построение цифрового стабилизатора для переключаемой линейной системы с запаздыванием в управлении / А.С. Фурсов, С.И. Миняев, В.С. Гусева // Дифференц. уравнения. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  2018. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  Т. 54, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  8. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  С. 1132 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 1141. 3. Фурсов, А.С. Синтез цифрового стабилизатора по выходу для переключаемой интервальной линейной системы / А.С. Фурсов, С.И. Миняев, Ю.М. Мосолова // Дифференц. уравнения. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  2019. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  Т. 55, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  11. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  С. 1545 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 1559. 4. Фурсов, А.С. Цифровая сверхстабилизация переключаемой интервальной линейной системы / А.С. Фурсов, Ю.М. Мосолова, С.И. Миняев // Дифференц. уравнения. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  2020. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  Т. 56, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  11. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  С. 1516 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 1527. 5. Фурсов, А.С. Одновременная стабилизация: теория построения универсального регулятора для семейства динамических объектов / А.С. Фурсов. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  М. : Аргамак-Медиа, 2016. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  238 с.

 

В. Е. Хартовский (ФИТМ ГрГУ имени Я. Купалы, Гродно, Беларусь) К вопросу назначения конечного спектра линейной системе нейтрального типа 16.10.2023

Объект исследования MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  линейная автономная система нейтрального типа

x ˙ (t)D( λ h ) x ˙ (t)=A( λ h )x(t)+B( λ h )u(t),t>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaacaaIOaGaamiDaiaaiM cacqGHsislcaWGebGaaGikaiabeU7aSnaaBaaaleaacaWGObaabeaa kiaaiMcaceWG4bGbaiaacaaIOaGaamiDaiaaiMcacaaI9aGaamyqai aaiIcacqaH7oaBdaWgaaWcbaGaamiAaaqabaGccaaIPaGaamiEaiaa iIcacaWG0bGaaGykaiabgUcaRiaadkeacaaIOaGaeq4UdW2aaSbaaS qaaiaadIgaaeqaaOGaaGykaiaadwhacaaIOaGaamiDaiaaiMcacaaI SaGaaGzbVlaadshacaaI+aGaaGimaiaaiYcaaaa@564D@                                     (5)

y(t)=C( λ h )x(t),t0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bGaaGikaiaadshacaaIPaGaaG ypaiaadoeacaaIOaGaeq4UdW2aaSbaaSqaaiaadIgaaeqaaOGaaGyk aiaadIhacaaIOaGaamiDaiaaiMcacaaISaGaaGzbVlaadshacqGHLj YScaaIWaGaaGOlaaaa@44B4@                                                                               (6)

 Здесь x(t) n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4bGaaGikaiaadshacaaIPaGaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWF DeIudaahaaWcbeqaaiaad6gaaaaaaa@4273@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  решение уравнения (5); u(t) l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWF DeIudaahaaWcbeqaaiaadYgaaaaaaa@426E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  управление, выбираемое из класса кусочно-непрерывных функций; y(t) r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bGaaGikaiaadshacaaIPaGaey icI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWF DeIudaahaaWcbeqaaiaadkhaaaaaaa@4278@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  наблюдаемый выход; λ h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH7oaBdaWgaaWcbaGaamiAaaqaba aaaa@348A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  оператор сдвига, определяемый для заданного h>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObGaaGOpaiaaicdaaaa@342C@  правилом ( λ h ) k f(t)=f(tkh) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaeq4UdW2aaSbaaSqaaiaadI gaaeqaaOGaaGykamaaCaaaleqabaGaam4AaaaakiaadAgacaaIOaGa amiDaiaaiMcacaaI9aGaamOzaiaaiIcacaWG0bGaeyOeI0Iaam4Aai aadIgacaaIPaaaaa@4143@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGRbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@3EDC@ ;

D(λ)= i=1 m λ i D i ,A(λ)= i=0 m λ i A i ,C(λ)= i=0 m λ i C i ,B(λ)= i=0 m λ i B i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGebGaaGikaiabeU7aSjaaiMcaca aI9aWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGTbaaniab ggHiLdGccqaH7oaBdaahaaWcbeqaaiaadMgaaaGccaWGebWaaSbaaS qaaiaadMgaaeqaaOGaaGilaiaaywW7caWGbbGaaGikaiabeU7aSjaa iMcacaaI9aWaaabCaeqaleaacaWGPbGaaGypaiaaicdaaeaacaWGTb aaniabggHiLdGccqaH7oaBdaahaaWcbeqaaiaadMgaaaGccaWGbbWa aSbaaSqaaiaadMgaaeqaaOGaaGilaiaaywW7caWGdbGaaGikaiabeU 7aSjaaiMcacaaI9aWaaabCaeqaleaacaWGPbGaaGypaiaaicdaaeaa caWGTbaaniabggHiLdGccqaH7oaBdaahaaWcbeqaaiaadMgaaaGcca WGdbWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaaywW7caWGcbGaaGik aiabeU7aSjaaiMcacaaI9aWaaabCaeqaleaacaWGPbGaaGypaiaaic daaeaacaWGTbaaniabggHiLdGccqaH7oaBdaahaaWcbeqaaiaadMga aaGccaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaaGilaaaa@75A8@

где D i n×n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGebWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIudaahaaWcbeqaaiaad6gacqGHxdaTcaWGUbaaaaaa@440F@ , A i n×n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGbbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIudaahaaWcbeqaaiaad6gacqGHxdaTcaWGUbaaaaaa@440C@ , C i l×n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGdbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIudaahaaWcbeqaaiaadYgacqGHxdaTcaWGUbaaaaaa@440C@ , B i n×r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGcbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIudaahaaWcbeqaaiaad6gacqGHxdaTcaWGYbaaaaaa@4411@ .

Пусть I i i×i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGjbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIudaahaaWcbeqaaiaadMgacqGHxdaTcaWGPbaaaaaa@440A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@  единичная матрица, W(p)=p( I n D( e ph ))A( e ph ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGxbGaaGikaiaadchacaaIPaGaaG ypaiaadchacaaIOaGaamysamaaBaaaleaacaWGUbaabeaakiabgkHi TiaadseacaaIOaGaamyzamaaCaaaleqabaGaeyOeI0IaamiCaiaadI gaaaGccaaIPaGaaGykaiabgkHiTiaadgeacaaIOaGaamyzamaaCaaa leqabaGaeyOeI0IaamiCaiaadIgaaaGccaaIPaaaaa@481E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  характеристическая матрица уравнения (5). Спектр (множество собственных значений) разомкнутой ( u0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaeyyyIORaaGimaaaa@353A@  ) системы (5) совпадает с множеством корней уравнения detW(p)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaciGGKbGaaiyzaiaacshacaWGxbGaaG ikaiaadchacaaIPaGaaGypaiaaicdaaaa@393F@ , которое в подробной записи имеет вид i=0 n p i g i ( e ph )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaaeWaqabSqaaiaadMgacaaI9aGaaG imaaqaaiaad6gaa0GaeyyeIuoakiaadchadaahaaWcbeqaaiaadMga aaGccaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadwgadaahaa WcbeqaaiaadchacaWGObaaaOGaaGykaiaai2dacaaIWaaaaa@413F@ , где g i () MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiabgwSixlaaiMcaaaa@377C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  некоторые полиномы, g n (0)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaaicdacaaIPaGaaGypaiaaigdaaaa@3773@ . Из этого уравнения видно, что спектр системы (5) состоит из бесконечного числа чисел.

Задача назначения конечного спектра заключается в построении регулятора с обратной связью такого, чтобы замкнутая система имела наперёд заданный конечный набор собственных значений, состоящий, как правило, из произвольных чисел с отрицательными действительными частями. Такая задача исследовалась многими авторами, наиболее важные результаты в этом направлении, а также решение более общей задачи модального управления (управления при помощи обратной связи коэффициентами характеристического уравнения) обсуждаются в работах [1, 2] (см. Введение). В статье [3] для систем запаздывающего типа с одним входом предложен алгебраический подход, позволяющий с единой позиции подойти к решению задач назначения конечного спектра и полной управляемости. При исследовании проблемы управления коэффициентами характеристического уравнения системы нейтрального типа (5) установлено [4], что в случае выполнения условия модальной управляемости исходную задачу можно свести к аналогичной задаче для системы запаздывающего типа с одним входом и дальнейшее исследование провести методами, описанными в [3]. Там же показано, что задача назначения конечного спектра разрешима тогда и только тогда, когда разрешима задача модальной управляемости. Систематизация подхода [4], а также исследование ослабленного варианта задачи модальной управляемости выполнены в статье [5, c. 321]. В настоящем сообщении методы [4, 5] обобщены на задачу назначения конечного спектра. Однако, в отличие от работ [4, 5], регулятор построен по неполным измерениям, определяемым наблюдаемым выходом (6). Основная идея заключена в модификации структуры регуляторов [4; 5, c. 321] посредством встраивания в их внутренний контур системы точной оценки решения, основанной на использовании конструкций финитных наблюдателей, разработанных в [5, 6]. Перейдём к постановке задачи.

Определим регулятор с обратной связью по выходу следующего вида:

u(t)= 01 [ x 1 (t)]+ 00 [y(t)], x ˙ 1 (t)= 11 [ x 1 (t)]+ 10 [y(t)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaaG ypamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiqaacqWF CeIudaWgaaWcbaGaaGimaiaaigdaaeqaaOGaaG4waiaadIhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaIDbGaey4kaSIa e8hhHi1aaSbaaSqaaiaaicdacaaIWaaabeaakiaaiUfacaWG5bGaaG ikaiaadshacaaIPaGaaGyxaiaaiYcacaaMf8UabmiEayaacaWaaSba aSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGypaiab=Xrisn aaBaaaleaacaaIXaGaaGymaaqabaGccaaIBbGaamiEamaaBaaaleaa caaIXaaabeaakiaaiIcacaWG0bGaaGykaiaai2facqGHRaWkcqWFCe IudaWgaaWcbaGaaGymaiaaicdaaeqaaOGaaG4waiaadMhacaaIOaGa amiDaiaaiMcacaaIDbGaaGOlaaaa@6BF4@                            (7)

 Здесь x 1 n 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIudaahaaWcbeqaaiaad6gadaWgaaqaaiaaigdaaeqaaaaaaa a@41E2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  вспомогательная переменная, операторы ij [] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hhHi1aaSbaaSqaaiaadMgacaWGQbaabeaa kiaaiUfacqGHflY1caaIDbaaaa@43BA@  определяются на множестве непрерывных функций φ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHgpGAcaaIOaGaamiDaiaaiMcaaa a@35D8@ , имеющих кусочно-непрерывную производную, по правилу

ij [φ(t)]= R ij 0 ( λ h )φ(t)+ λ h R ij 1 ( λ h ) φ ˙ (t)+ 0 h 0 R ^ ij (s)φ(ts)ds, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hhHi1aaSbaaSqaaiaadMgacaWGQbaabeaa kiaaiUfacqaHgpGAcaaIOaGaamiDaiaaiMcacaaIDbGaaGypaiaadk fadaqhaaWcbaGaamyAaiaadQgaaeaacaaIWaaaaOGaaGikaiabeU7a SnaaBaaaleaacaWGObaabeaakiaaiMcacqaHgpGAcaaIOaGaamiDai aaiMcacqGHRaWkcqaH7oaBdaWgaaWcbaGaamiAaaqabaGccaWGsbWa a0baaSqaaiaadMgacaWGQbaabaGaaGymaaaakiaaiIcacqaH7oaBda WgaaWcbaGaamiAaaqabaGccaaIPaGafqOXdOMbaiaacaaIOaGaamiD aiaaiMcacqGHRaWkdaWdXbqabSqaaiaaicdaaeaacaWGObWaaSbaae aacaaIWaaabeaaa0Gaey4kIipakmaaHaaabaGaamOuaaGaayPadaWa aSbaaSqaaiaadMgacaWGQbaabeaakiaaiIcacaWGZbGaaGykaiabeA 8aQjaaiIcacaWG0bGaeyOeI0Iaam4CaiaaiMcacaWGKbGaam4Caiaa iYcaaaa@7685@                           (8)

 где R ij 0 ( λ h ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaa0baaSqaaiaadMgacaWGQb aabaGaaGimaaaakiaaiIcacqaH7oaBdaWgaaWcbaGaamiAaaqabaGc caaIPaaaaa@399E@ , R ij 1 ( λ h ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaa0baaSqaaiaadMgacaWGQb aabaGaaGymaaaakiaaiIcacqaH7oaBdaWgaaWcbaGaamiAaaqabaGc caaIPaaaaa@399F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  заданные полиномиальные матрицы, R ^ ij (s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaqiaaqaaiaadkfaaiaawkWaamaaBa aaleaacaWGPbGaamOAaaqabaGccaaIOaGaam4CaiaaiMcaaaa@37C6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  заданные кусочно-непрерывные матричные функции, h 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaaicdaaaa@351C@ . Каждому оператору вида (8) поставим в соответствие матрицу

R ij (p)= R ij 0 ( e ph )+p e ph R ij 1 ( e ph )+ 0 h 0 R ^ ij (s) e ps ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=TrisnaaBaaaleaacaWGPbGaamOAaaqabaGc caaIOaGaamiCaiaaiMcacaaI9aGaamOuamaaDaaaleaacaWGPbGaam OAaaqaaiaaicdaaaGccaaIOaGaamyzamaaCaaaleqabaGaeyOeI0Ia amiCaiaadIgaaaGccaaIPaGaey4kaSIaamiCaiaadwgadaahaaWcbe qaaiabgkHiTiaadchacaWGObaaaOGaamOuamaaDaaaleaacaWGPbGa amOAaaqaaiaaigdaaaGccaaIOaGaamyzamaaCaaaleqabaGaeyOeI0 IaamiCaiaadIgaaaGccaaIPaGaey4kaSYaa8qCaeqaleaacaaIWaaa baGaamiAamaaBaaabaGaaGimaaqabaaaniabgUIiYdGcdaqiaaqaai aadkfaaiaawkWaamaaBaaaleaacaWGPbGaamOAaaqabaGccaaIOaGa am4CaiaaiMcacaWGLbWaaWbaaSqabeaacqGHsislcaWGWbGaam4Caa aakiaadsgacaWGZbGaaGOlaaaa@6BBE@

Выпишем характеристическую матрицу замкнутой системы (5) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ (7):

W1pWpBephR00pCephBephR01pR10pCephpIn1R11p.                           (9)

 

Задача 1. Пусть задан произвольный полином d(p) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGKbGaaGikaiaadchacaaIPaaaaa@3500@  с вещественными коэффициентами. Требуется построить регулятор вида (7) такой, что определитель характеристической матрицы (9) замкнутой системы (5) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ (7) совпадает с полиномом d(p) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGKbGaaGikaiaadchacaaIPaaaaa@3500@ , т.е. det W 1 (p)=d(p) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaciGGKbGaaiyzaiaacshacaWGxbWaaS baaSqaaiaaigdaaeqaaOGaaGikaiaadchacaaIPaGaaGypaiaadsga caaIOaGaamiCaiaaiMcaaaa@3CB9@ .

Получен критерий существования регулятора (7), обеспечивающего решение задачи 1.

Теорема 1. Задача 1 разрешима для любого полинома d(p) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGKbGaaGikaiaadchacaaIPaaaaa@3500@ , degd(p)2n+r+4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaciGGKbGaaiyzaiaacEgacaWGKbGaaG ikaiaadchacaaIPaGaeyyzImRaaGOmaiaad6gacqGHRaWkcaWGYbGa ey4kaSIaaGinaaaa@3EAC@ , имеющего по крайней мере два вещественных корня (возможно, равных между собой), тогда и только тогда, когда выполняются условия:

1) rank[W(p),B( e ph )]=n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGYbGaamyyaiaad6gacaWGRbGaaG jcVlaaiUfacaWGxbGaaGikaiaadchacaaIPaGaaGilaiaadkeacaaI OaGaamyzamaaCaaaleqabaGaeyOeI0IaamiCaiaadIgaaaGccaaIPa GaaGyxaiaai2dacaWGUbaaaa@449C@ , p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGWbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFceYqaaa@3EC3@ ;

2) rank[ I n D(p),B(p)]=n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGYbGaamyyaiaad6gacaWGRbGaaG jcVlaaiUfacaWGjbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0Iaamir aiaaiIcacaWGWbGaaGykaiaaiYcacaWGcbGaaGikaiaadchacaaIPa GaaGyxaiaai2dacaWGUbaaaa@4472@ , p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGWbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFceYqaaa@3EC3@ ;

3) rank W(p) C( e ph ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGYbGaamyyaiaad6gacaWGRbWaam WaaeaafaqabeGabaaabaGaam4vaiaaiIcacaWGWbGaaGykaaqaaiaa doeacaaIOaGaamyzamaaCaaaleqabaGaeyOeI0IaamiCaiaadIgaaa GccaaIPaaaaaGaay5waiaaw2faaiaaygW7aaa@4259@ , p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGWbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFceYqaaa@3EC3@ ;

4) rank I n D(p) C(p) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGYbGaamyyaiaad6gacaWGRbWaam WaaeaafaqabeGabaaabaGaamysamaaBaaaleaacaWGUbaabeaakiab gkHiTiaadseacaaIOaGaamiCaiaaiMcaaeaacaWGdbGaaGikaiaadc hacaaIPaaaaaGaay5waiaaw2faaiaaygW7aaa@422F@ , p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGWbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFceYqaaa@3EC3@ .

Условия 1), 2) представляют собой критерий модальной управляемости системы (5). Условия 3), 4) необходимы и достаточны для существования финитного наблюдателя для системы (5), (6). Эти же условия определяют критерий финальной наблюдаемости системы (5), (6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  условия существования непрерывной операции восстановления “отрезка решения” x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4bGaaGikaiaadshacaaIPaaaaa@3518@ , t[ t 0 mh, t 0 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccqGHsislcaWGTbGaamiAaiaaiYcacaWG 0bWaaSbaaSqaaiaaicdaaeqaaOGaaGyxaaaa@3D5A@ , при некотором достаточно большом t 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaaicdaaaa@3528@ , по результатам наблюдения y(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bGaaGikaiaadshacaaIPaaaaa@3519@ , t[0, t 0 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamiDamaaBaaaleaacaaIWaaabeaakiaai2faaaa@395F@  (при известном управлении u(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadshacaaIPaaaaa@3515@ , t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaaGOpaiaaicdaaaa@3438@  ).

Литература.  1. Хартовский, В.Е. Управление линейными системами нейтрального типа: качественный анализ и реализация обратных связей / В.Е. Хартовский. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  Гродно : ГрГУ, 2022. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  500 с. 2. Зайцев, В.А. Модальное управление и стабилизация линейных систем статической обратной связью по выходу / В.А. Зайцев, И.Г. Ким. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  Ижевск : Изд. центр «Удмуртский университет», 2022. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  184 с. 3. Метельский, А.В. Алгебраический подход к стабилизации дифференциальной системы запаздывающего типа / А.В. Метельский // Дифференц. уравнения. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  2018. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  Т. 54, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  8. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  С. 1119 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 1131. 4. Метельский, А.В. Критерии модальной управляемости линейных систем нейтрального типа / А.В. Метельский, В.Е. Хартовский // Дифференц. уравнения. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  2016. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  Т. 52, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  11. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  С. 1506 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 1521. 5. Метельский, А.В. Синтез финитного наблюдателя для линейных систем нейтрального типа / А.В. Метельский, В.Е. Хартовский // Автоматика и телемеханика. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  2019, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  12. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  С. 80 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 102. 6. Метельский, А.В. О точном восстановлении решения линейных систем нейтрального типа / А.В. Метельский, В.Е. Хартовский // Дифференц. уравнения. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  2021. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  Т. 57, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  2. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  С. 265 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 285.

 

Е. И. Атамась (МГУ ВМК, Москва, Россия) Один метод реализации интервальных систем 20.11.2023

Задача реализации управляемой линейной системы является классической и для стационарных систем давно имеет полное решение. Построение реализации тривиально в случае скалярных систем и немногим более сложно для векторных систем. В данном сообщении мы зададимся вопросом о методах построения реализации для интервальных передаточных матриц, т.е. матриц, элементами которых являются рациональные выражения с интервальными коэффициентами [1], например, в случае матриц размера 1×1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIXaGaey41aqRaaGymaaaa@354A@  будем иметь

W(s)= b n1 s n1 ++ b 1 s+ b 0 s n + a n1 + a 1 s+ a 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGxbGaaGikaiaadohacaaIPaGaaG ypamaalaaabaGaamOyamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqa baGccaWGZbWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiabgU caRiablAciljabgUcaRiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG ZbGaey4kaSIaamOyamaaBaaaleaacaaIWaaabeaaaOqaaiaadohada ahaaWcbeqaaiaad6gaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaad6ga cqGHsislcaaIXaaabeaakiablAciljabgUcaRiaadggadaWgaaWcba GaaGymaaqabaGccaWGZbGaey4kaSIaamyyamaaBaaaleaacaaIWaaa beaaaaGccaaISaaaaa@54BA@

где b i =[ b ¯ i , b ¯ i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaiUfadaadaaqaaiaadkgaaaWaaSbaaSqaaiaadMgaaeqa aOGaaGilamaanaaabaGaamOyaaaadaWgaaWcbaGaamyAaaqabaGcca aIDbaaaa@3B48@ , a i =[ a ¯ i , a ¯ i ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaaiUfadaadaaqaaiaadggaaaWaaSbaaSqaaiaadMgaaeqa aOGaaGilamaanaaabaGaamyyaaaadaWgaaWcbaGaamyAaaqabaGcca aIDbaaaa@3B45@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  вещественные интервалы.

Из-за привлечения интервальных вычислений непосредственный перенос многих методов построения реализации, известных для систем с точечными параметрами, оказывается невозможен. В работе [2] был предложен подход для скалярных систем, основанный на использовании канонической формы управляемости/наблюдаемости. К сожалению, обобщить его на векторные системы крайне затруднительно: построение известных аналогов таких канонических форм сопряжено с заменами координат, что в интервальном случае практически невозможно.

Попробуем применить для решения поставленной задачи алгоритм реализации Гилберта. Суть его состоит в разложении передаточной матрицы в сумму элементарных дробей, после чего каждая из них реализуется отдельно тривиальным образом. Однако в интервальной арифметике классический способ разложения в элементарные дроби на основе метода неопределённых коэффициентов также оказывается малоприменим, поскольку приводит к решению интервальной системы линейных алгебраических уравнений. Для получения более простого подхода сделаем следующие предположения о передаточной функции W(s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGxbGaaGikaiaadohacaaIPaaaaa@34F6@ . Будем считать, что W(s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGxbGaaGikaiaadohacaaIPaaaaa@34F6@  физически реализуема, т.е. степень числителя каждого её элемента строго меньше степени знаменателя, а все полюсы системы простые и вещественные. В этом случае можно записать равенство

W(s)= b(s) a(s) = A 1 s p 1 + A 2 s p 2 ++ A n s p n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGxbGaaGikaiaadohacaaIPaGaaG ypamaalaaabaGaamOyaiaaiIcacaWGZbGaaGykaaqaaiaadggacaaI OaGaam4CaiaaiMcaaaGaaGypamaalaaabaGaamyqamaaBaaaleaaca aIXaaabeaaaOqaaiaadohacqGHsislcaWGWbWaaSbaaSqaaiaaigda aeqaaaaakiabgUcaRmaalaaabaGaamyqamaaBaaaleaacaaIYaaabe aaaOqaaiaadohacqGHsislcaWGWbWaaSbaaSqaaiaaikdaaeqaaaaa kiabgUcaRiablAciljabgUcaRmaalaaabaGaamyqamaaBaaaleaaca WGUbaabeaaaOqaaiaadohacqGHsislcaWGWbWaaSbaaSqaaiaad6ga aeqaaaaakiaaiYcaaaa@52C1@

где p i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaa aa@33CC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  интервальные корни многочлена a(s). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGHbGaaGikaiaadohacaaIPaGaaG Olaaaa@35B8@  Сделанное нами предположение о простоте корней позволяет использовать относительно простые алгоритмы для их поиска (см., например, [3]), а также вычислять коэффициенты A i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGbbWaaSbaaSqaaiaadMgaaeqaaa aa@339D@ , для этого применим хорошо известную формулу A i =b( p i ) a i ( p i ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGbbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaadkgacaaIOaGaamiCamaaBaaaleaacaWGPbaabeaakiaa iMcacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadchadaWgaa WcbaGaamyAaaqabaGccaaIPaGaaGilaaaa@3F11@  где a i (s)=a(s)(s p i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadohacaaIPaGaaGypaiaadggacaaIOaGaam4CaiaaiMca caaIOaGaam4CaiabgkHiTiaadchadaWgaaWcbaGaamyAaaqabaGcca aIPaaaaa@3F91@ . Тогда нам потребуется лишь вычислить значения интервальных полиномов в интервальных точках, что является простой операцией. Так, каждой дроби вида A i (s p i ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGbbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadohacqGHsislcaWGWbWaaSbaaSqaaiaadMgaaeqaaOGa aGykaaaa@390A@  будет соответствовать часть реализации

x ˙ i = p i Ix+ A i u, y i =I x i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaadaWgaaWcbaGaamyAaa qabaGccaaI9aGaamiCamaaBaaaleaacaWGPbaabeaakiaadMeacaWG 4bGaey4kaSIaamyqamaaBaaaleaacaWGPbaabeaakiaadwhacaaISa GaaGjbVlaadMhadaWgaaWcbaGaamyAaaqabaGccaaI9aGaamysaiaa dIhadaWgaaWcbaGaamyAaaqabaGccaaISaaaaa@4529@

где I MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGjbaaaa@328B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  единичная матрица соответствующего размера.

Таким образом, предложенный алгоритм позволяет строить реализацию векторной интервальной системы при указанных ограничениях.

Литература. 1. Прикладной интервальный анализ / Л. Жолен, М. Кифер, О. Дидри, Э. Вальтэр; пер. с англ. С.И. Куликова. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  М.; Ижевск: Институт компьютерных исследований, 2015. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  467 с. 2. Атамась, Е.И. О переходе между различными представлениями интервальных управляемых систем / Е.И. Атамась // Вестн. Московского ун-та. Серия 15: Вычислит. математика и кибернетика. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  2023. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  4. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  С. 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 8. 3. Hansen, E.R. Sharp bounds on interval polynomial roots / E.R. Hansen // Reliable Computing. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  2002. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  8. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  P. 115 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 122.

 

А. И. Астровский (БГЭУ, Минск, Беларусь) Наблюдаемость линейных нестационарных систем с ограничением на выходную функцию 11.12.2023

В классической постановке задачи наблюдаемости [1] для линейных систем предполагалось, что выходная функция системы в момент t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0baaaa@32B6@  линейно связана с состоянием системы в этот же момент и её измерения всегда доступны наблюдателю. Вместе с тем в приложениях (например, в теории электрических цепей, в навигационной теории, в медицинских исследованиях и т.д.) есть задачи наблюдения для линейных систем, у которых выходная функция может быть измерена тогда и только тогда, когда фазовый вектор принадлежит некоторому заданному множеству из пространства n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOBaaaakiaai6ca aaa@3E56@  Задачи наблюдения такого типа относят к специальному нелинейному классу задач наблюдения и называют задачами наблюдения с ограничениями на выходную функцию. Задачи наблюдения с геометрически ограниченными наблюдениями исследовались, например, в [2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 4] для стационарных систем при ограничениях на фазовый вектор в виде конусов в конечномерном пространстве.

Рассмотрим для линейных нестационарных систем обыкновенных дифференциальных уравнений задачи наблюдаемости при условии, что выходная функция системы может быть измерена тогда и только тогда, когда она положительна:

x ˙ (t)=A(t)x(t), y + (t)= y + (t, x 0 )=[c(t)x(t )] + ,tT=[ t 0 , t 1 ]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaacaaIOaGaamiDaiaaiM cacaaI9aGaamyqaiaaiIcacaWG0bGaaGykaiaadIhacaaIOaGaamiD aiaaiMcacaaISaGaaGzbVlaadMhadaahaaWcbeqaaiabgUcaRaaaki aaiIcacaWG0bGaaGykaiaai2dacaWG5bWaaWbaaSqabeaacqGHRaWk aaGccaaIOaGaamiDaiaaiYcacaWG4bWaaSbaaSqaaiaaicdaaeqaaO GaaGykaiaai2dacaaIBbGaam4yaiaaiIcacaWG0bGaaGykaiaadIha caaIOaGaamiDaiaaiMcacaaIDbWaaWbaaSqabeaacqGHRaWkaaGcca aISaGaaGzbVlaadshacqGHiiIZcaWGubGaaGypaiaaiUfacaWG0bWa aSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshadaWgaaWcbaGaaGymaa qabaGccaaIDbGaaGOlaaaa@62BA@                        (10)

 Здесь x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4bGaaGikaiaadshacaaIPaaaaa@3518@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@   n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbaaaa@32B0@  -вектор-столбец состояния системы (10) в момент t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0baaaa@32B6@ ; n×n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaey41aqRaamOBaaaa@35BA@  -матричная функция A(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGbbGaaGikaiaadshacaaIPaaaaa@34E1@  и n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbaaaa@32B0@  -вектор-строка c(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGJbGaaGikaiaadshacaaIPaaaaa@3503@  непрерывны на T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@ ; [c(t)x(t)] + =max{0,c(t)x(t)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaam4yaiaaiIcacaWG0bGaaG ykaiaadIhacaaIOaGaamiDaiaaiMcacaaIDbWaaWbaaSqabeaacqGH RaWkaaGccaaI9aGaciyBaiaacggacaGG4bGaaG4EaiaaicdacaaISa Gaam4yaiaaiIcacaWG0bGaaGykaiaadIhacaaIOaGaamiDaiaaiMca caaI9baaaa@48FB@  для каждого tT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4Saamivaaaa@3513@ .

Говорят, что начальные состояния x 0 1 = x 0 1 ( t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4bWaa0baaSqaaiaaicdaaeaaca aIXaaaaOGaaGypaiaadIhadaqhaaWcbaGaaGimaaqaaiaaigdaaaGc caaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiMcaaaa@3B24@  и x 0 2 = x 0 2 ( t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4bWaa0baaSqaaiaaicdaaeaaca aIYaaaaOGaaGypaiaadIhadaqhaaWcbaGaaGimaaqaaiaaikdaaaGc caaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiMcaaaa@3B26@  из n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOBaaaaaaa@3D94@  системы (10) положительно различимы, если соответствующие им выходные функции y 1 + (t)= y + (t, x 0 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaa0baaSqaaiaaigdaaeaacq GHRaWkaaGccaaIOaGaamiDaiaaiMcacaaI9aGaamyEamaaCaaaleqa baGaey4kaScaaOGaaGikaiaadshacaaISaGaamiEamaaDaaaleaaca aIWaaabaGaaGymaaaakiaaiMcaaaa@3F88@  и y 2 + (t)= y + (t, x 0 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaa0baaSqaaiaaikdaaeaacq GHRaWkaaGccaaIOaGaamiDaiaaiMcacaaI9aGaamyEamaaCaaaleqa baGaey4kaScaaOGaaGikaiaadshacaaISaGaamiEamaaDaaaleaaca aIWaaabaGaaGOmaaaakiaaiMcaaaa@3F8A@  не совпадают тождественно на отрезке T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@ , т.е. y 1 + (t) y 2 + (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaa0baaSqaaiaaigdaaeaacq GHRaWkaaGccaaIOaGaamiDaiaaiMcacuGHHjIUgaGfaiaadMhadaqh aaWcbaGaaGOmaaqaaiabgUcaRaaakiaaiIcacaWG0bGaaGykaaaa@3E04@ , tT. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4Saamivaiaai6caaa a@35CB@  Система (10) положительно наблюдаема, если любые два начальные состояния из n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOBaaaaaaa@3D94@  положительно различимы.

Свойство положительной наблюдаемости накладывает довольно жёсткие требования на систему наблюдения. Например, при n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@  любая стационарная система вида (10) не является положительно наблюдаемой (хотя она наблюдаема при c0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGJbGaeyiyIKRaaGimaaaa@3526@  ). Скалярная нестационарная система наблюдения со знакопеременной функцией c(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGJbGaaGikaiaadshacaaIPaaaaa@3503@ , tT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4Saamivaaaa@3513@ , служит примером положительно наблюдаемой системы.

Отождествим систему x ˙ (t)=A(t)x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaacaaIOaGaamiDaiaaiM cacaaI9aGaamyqaiaaiIcacaWG0bGaaGykaiaadIhacaaIOaGaamiD aiaaiMcaaaa@3C67@ , y(t)=c(t)x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bGaaGikaiaadshacaaIPaGaaG ypaiaadogacaaIOaGaamiDaiaaiMcacaWG4bGaaGikaiaadshacaaI Paaaaa@3C81@ , tT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4Saamivaaaa@3513@ , с парой (A,c) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamyqaiaaiYcacaWGJbGaaG ykaaaa@3586@ . Пусть h i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@362C@ , i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGUbaaaaaa@35E7@ , являются компонентами n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbaaaa@32B0@  -вектор-строки h(t)=c(t)F(t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObGaaGikaiaadshacaaIPaGaaG ypaiaadogacaaIOaGaamiDaiaaiMcacaWGgbGaaGikaiaadshacaaI SaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiMcaaaa@3EDD@ , где F(t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGgbGaaGikaiaadshacaaISaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiMcaaaa@3785@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  фундаментальная матрица системы (10): F ˙ (t, t 0 )=A(t)F(t, t 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWGgbGbaiaacaaIOaGaamiDaiaaiY cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaWGbbGa aGikaiaadshacaaIPaGaamOraiaaiIcacaWG0bGaaGilaiaadshada WgaaWcbaGaaGimaaqabaGccaaIPaaaaa@4141@ , tT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4Saamivaaaa@3513@ , F( t 0 , t 0 )= E n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGgbGaaGikaiaadshadaWgaaWcba GaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIWaaabeaakiaa iMcacaaI9aGaamyramaaBaaaleaacaWGUbaabeaakiaai6caaaa@3BE7@

Система (10) задаёт отображение “начальное состояние” MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqGHsgIRaaa@33AA@  “выходная функция”, которое действует по правилу O T ( x 0 )=([h(t) x 0 ] + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=5q8pnaaBaaaleaacaWGubaabeaakiaaiIca caWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaaIOaGaaG 4waiaadIgacaaIOaGaamiDaiaaiMcacaWG4bWaaSbaaSqaaiaaicda aeqaaOGaaGyxamaaCaaaleqabaGaey4kaScaaaaa@4B06@ , tT) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4SaamivaiaaiMcaaa a@35C6@ . Понятно, что система (10) положительно наблюдаема тогда и только тогда, когда отображение O T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=5q8pnaaBaaaleaacaWGubaabeaaaaa@3E1E@  инъективно. Очевидно, что наблюдаемость пары (A,c) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamyqaiaaiYcacaWGJbGaaG ykaaaa@3586@  является необходимым и достаточным условием положительной наблюдаемости системы (10).

Хорошо известно [1], что необходимым и достаточным условием наблюдаемости пары (A,c) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamyqaiaaiYcacaWGJbGaaG ykaaaa@3586@  является линейная независимость системы функций { h 1 (t),, h n (t)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI7bGaamiAamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGykaiaaiYcacqWIMaYscaaISaGaamiA amaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2haaa a@3F07@  на T. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubGaaGOlaaaa@334E@

Говорят, что система функций { b 1 (t),, b n (t)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI7bGaamOyamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGykaiaaiYcacqWIMaYscaaISaGaamOy amaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2haaa a@3EFB@  вполне линейно независима на отрезке T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@ , если любая нетривиальная линейная комбинация этих функций g 1 b 1 (t)++ g n b n (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaamOyamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiab gUcaRiabl+UimjabgUcaRiaadEgadaWgaaWcbaGaamOBaaqabaGcca WGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadshacaaIPaaaaa@4205@  может быть равна нулю только на множестве меры ноль. Точку τ * ( t 0 , t 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHepaDdaahaaWcbeqaaiaaiQcaaa GccqGHiiIZcaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYca caWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa@3BDF@  называют корнем-узлом для непрерывной функции ω:T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHjpWDcaaI6aGaamivaiabgkziUo rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHifa aa@41CB@ , если ω( τ * )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHjpWDcaaIOaGaeqiXdq3aaWbaaS qabeaacaaIQaaaaOGaaGykaiaai2dacaaIWaaaaa@3920@  и при переходе через эту точку τ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHepaDdaahaaWcbeqaaiaaiQcaaa aaaa@3463@  значения функции меняют знак.

Система непрерывных функций { b 1 (t),, b n (t)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI7bGaamOyamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGykaiaaiYcacqWIMaYscaaISaGaamOy amaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2haaa a@3EFB@  на отрезке T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@  называется [5, 6] системой функций Чебышёва порядка n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaeyOeI0IaaGymaaaa@3458@ , если любая нетривиальная линейная комбинация этих функций ω(g,t)= g 1 b 1 (t)++ g n b n (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHjpWDcaaIOaGaam4zaiaaiYcaca WG0bGaaGykaiaai2dacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaamOy amaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiabgUcaRi abl+UimjabgUcaRiaadEgadaWgaaWcbaGaamOBaaqabaGccaWGIbWa aSbaaSqaaiaad6gaaeqaaOGaaGikaiaadshacaaIPaaaaa@4899@  имеет не более n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaeyOeI0IaaGymaaaa@3458@  корней на T. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubGaaGOlaaaa@334E@

Непосредственно из определения положительной наблюдаемости следует

Лемма 1.  Для положительной наблюдаемости системы (10) необходимо, чтобы каждая нетривиальная линейная комбинация ω(g,t)= g 1 h 1 (t)++ g n h n (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHjpWDcaaIOaGaam4zaiaaiYcaca WG0bGaaGykaiaai2dacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaamiA amaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiabgUcaRi abl+UimjabgUcaRiaadEgadaWgaaWcbaGaamOBaaqabaGccaWGObWa aSbaaSqaaiaad6gaaeqaaOGaaGikaiaadshacaaIPaaaaa@48A5@  по системе функций { h 1 (t),, h n (t)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI7bGaamiAamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGykaiaaiYcacqWIMaYscaaISaGaamiA amaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2haaa a@3F07@  имела хотя бы один корень-узел на промежутке ( t 0 , t 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa @37AB@ .

Из определения положительной наблюдаемости и леммы 1 вытекает

Теорема 1.  Система (10) положительно наблюдаема на отрезке T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@ , если для пары (A,c) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamyqaiaaiYcacaWGJbGaaG ykaaaa@3586@  функции h 1 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaaaaa@35F9@ , ..., h n (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaaaaa@3631@  вполне линейно независимы на T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@  и у каждого нетривиального многочлена ω(g,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHjpWDcaaIOaGaam4zaiaaiYcaca WG0bGaaGykaaaa@378A@  по этим функциям существует хотя бы один корень-узел на интервале ( t 0 , t 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa @37AB@ .

Рассмотрим на отрезке [1,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaeyOeI0IaaGymaiaaiYcaca aIXaGaaGyxaaaa@36A2@  систему наблюдения второго порядка: x ˙ 1 (t)= x 2 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaadaWgaaWcbaGaaGymaa qabaGccaaIOaGaamiDaiaaiMcacaaI9aGaamiEamaaBaaaleaacaaI YaaabeaakiaaiIcacaWG0bGaaGykaaaa@3B26@ , x ˙ 2 (t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3794@ , y+tsin3tx1t+tx2t+. Для этой системы функции h1tsin3t, h2ttsin3t+t вполне линейно независимы на отрезке [1,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaeyOeI0IaaGymaiaaiYcaca aIXaGaaGyxaaaa@36A2@ . Любой нетривиальный многочлен ωg,tg1sin3t+g2tsin3t+ по этим функциям имеет точку t=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  в качестве корня-узла. Следовательно, данная система в силу теоремы 0 положительно наблюдаема на [1,1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaeyOeI0IaaGymaiaaiYcaca aIXaGaaGyxaiaai6caaaa@375A@

Покажем, что ни одно из условий теоремы 0 нельзя опустить. Как следует из леммы 0, наличие хотя бы одного корня-узла у каждого многочлена ω(g,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHjpWDcaaIOaGaam4zaiaaiYcaca WG0bGaaGykaiaaiYcaaaa@3840@   t( t 0 , t 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4SaaGikaiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIXaaa beaakiaaiMcaaaa@3A28@ , является необходимым условием положительной наблюдаемости системы (10). Ниже приведём пример системы (10), для которой функции h 1 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaaaaa@35F9@ , ..., h n (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaaaaa@3631@  не вполне линейно независимы на T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@ , у каждого нетривиального многочлена ω(g,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHjpWDcaaIOaGaam4zaiaaiYcaca WG0bGaaGykaaaa@378A@  существует по крайней мере один корень-узел на ( t 0 , t 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa @37AB@  и система (10) не является положительно наблюдаемой.

Пусть n=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaikdaaaa@3433@  и x ˙ 1 (t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaadaWgaaWcbaGaaGymaa qabaGccaaIOaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3793@ , x ˙ 2 (t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3794@ , y(t)= c 1 (t) x 1 (t)+ c 2 (t) x 2 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bGaaGikaiaadshacaaIPaGaaG ypaiaadogadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMca caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaey 4kaSIaam4yamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGyk aiaadIhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcaaa a@47CA@ , tT=[1,2], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4Saamivaiaai2daca aIBbGaeyOeI0IaaGymaiaaiYcacaaIYaGaaGyxaiaaiYcaaaa@3B76@  где непрерывные функции c 1 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGJbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaaaaa@35F4@ , c 2 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshacaaIPaaaaa@35F5@  имеют вид

c 1 (t)=t,t[1,0); c 1 (t)= t 2 (t1),t[0,1); c 1 (t)=t1,t[1,2]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGJbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaadshacaaISaGaaGzbVlaadsha cqGHiiIZcaaIBbGaeyOeI0IaaGymaiaaiYcacaaIWaGaaGykaiaaiU dacaaMf8Uaam4yamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGa aGykaiaai2dacqGHsislcaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaG ikaiaadshacqGHsislcaaIXaGaaGykaiaaiYcacaaMf8UaamiDaiab gIGiolaaiUfacaaIWaGaaGilaiaaigdacaaIPaGaaG4oaiaaywW7ca WGJbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGyp aiaadshacqGHsislcaaIXaGaaGilaiaaywW7caWG0bGaeyicI4SaaG 4waiaaigdacaaISaGaaGOmaiaai2facaaI7aaaaa@6B4A@

c 2 (t)=t,t[1,0); c 2 (t)=t(t1),t[0,1); c 2 (t)=1t,t[1,2]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaadshacaaISaGaaGzbVlaadsha cqGHiiIZcaaIBbGaeyOeI0IaaGymaiaaiYcacaaIWaGaaGykaiaaiU dacaaMf8Uaam4yamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGa aGykaiaai2dacqGHsislcaWG0bGaaGikaiaadshacqGHsislcaaIXa GaaGykaiaaiYcacaaMf8UaamiDaiabgIGiolaaiUfacaaIWaGaaGil aiaaigdacaaIPaGaaG4oaiaaywW7caWGJbWaaSbaaSqaaiaaikdaae qaaOGaaGikaiaadshacaaIPaGaaGypaiaaigdacqGHsislcaWG0bGa aGilaiaaywW7caWG0bGaeyicI4SaaG4waiaaigdacaaISaGaaGOmai aai2facaaIUaaaaa@6A4D@

 Несложно заметить, что в приведённом примере h 1 (t)= c 1 (t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaadogadaWgaaWcbaGaaGymaaqa baGccaaIOaGaamiDaiaaiMcacaaISaaaaa@3BAD@   h 2 (t)= c 2 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaadogadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaamiDaiaaiMcaaaa@3AF9@  и система функций { h 1 (t), h 2 (t)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI7bGaamiAamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGykaiaaiYcacaWGObWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadshacaaIPaGaaGyFaaaa@3CF8@  линейно независима, но не вполне линейно независима на T. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubGaaGOlaaaa@334E@  Функции ω(g,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHjpWDcaaIOaGaam4zaiaaiYcaca WG0bGaaGykaiaaiYcaaaa@3840@   g=( g 1 , g 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGNbGaaGypaiaaiIcacaWGNbWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadEgadaWgaaWcbaGaaGOmaaqa baGccaaIPaaaaa@3946@  можно представить в виде

ω(g,t)=( g 1 + g 2 )t,t[1,0);ω(g,t)=t(t1)( g 1 t+ g 2 ),t[0,1); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHjpWDcaaIOaGaam4zaiaaiYcaca WG0bGaaGykaiaai2dacaaIOaGaam4zamaaBaaaleaacaaIXaaabeaa kiabgUcaRiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaamiDai aaiYcacaaMf8UaamiDaiabgIGiolaaiUfacqGHsislcaaIXaGaaGil aiaaicdacaaIPaGaaG4oaiaaywW7cqaHjpWDcaaIOaGaam4zaiaaiY cacaWG0bGaaGykaiaai2dacqGHsislcaWG0bGaaGikaiaadshacqGH sislcaaIXaGaaGykaiaaiIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaamiDaiabgUcaRiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIPaGa aGilaiaaywW7caWG0bGaeyicI4SaaG4waiaaicdacaaISaGaaGymai aaiMcacaaI7aaaaa@67D4@

ω(g,t)=( g 1 g 2 )(t1),t[1,2]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHjpWDcaaIOaGaam4zaiaaiYcaca WG0bGaaGykaiaai2dacaaIOaGaam4zamaaBaaaleaacaaIXaaabeaa kiabgkHiTiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGikai aadshacqGHsislcaaIXaGaaGykaiaaiYcacaaMf8UaamiDaiabgIGi olaaiUfacaaIXaGaaGilaiaaikdacaaIDbGaaGOlaaaa@4BD6@

Легко проверяется, что каждый нетривиальный многочлен ω(g,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHjpWDcaaIOaGaam4zaiaaiYcaca WG0bGaaGykaaaa@378A@  имеет корень-узел. Для начального момента времени t 0 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiabgkHiTiaaigdaaaa@3615@  начальные состояния ( x 01 1 , x 02 1 )=(1,1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamiEamaaDaaaleaacaaIWa GaaGymaaqaaiaaigdaaaGccaaISaGaamiEamaaDaaaleaacaaIWaGa aGOmaaqaaiaaigdaaaGccaaIPaGaaGypaiaaiIcacqGHsislcaaIXa GaaGilaiabgkHiTiaaigdacaaIPaaaaa@40D3@  и ( x 01 2 , x 02 2 )=(2,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamiEamaaDaaaleaacaaIWa GaaGymaaqaaiaaikdaaaGccaaISaGaamiEamaaDaaaleaacaaIWaGa aGOmaaqaaiaaikdaaaGccaaIPaGaaGypaiaaiIcacqGHsislcaaIYa GaaGilaiaaicdacaaIPaaaaa@3FE8@  порождают выходные функции

y 1 (t)=2t,t[1,0); y 1 (t)=t( t 2 1),t[0,1); y 1 (t)=0,t[1,2]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiabgkHiTiaaikdacaWG0bGaaGil aiaaywW7caWG0bGaeyicI4SaaG4waiabgkHiTiaaigdacaaISaGaaG imaiaaiMcacaaI7aGaaGzbVlaadMhadaWgaaWcbaGaaGymaaqabaGc caaIOaGaamiDaiaaiMcacaaI9aGaamiDaiaaiIcacaWG0bWaaWbaaS qabeaacaaIYaaaaOGaeyOeI0IaaGymaiaaiMcacaaISaGaaGzbVlaa dshacqGHiiIZcaaIBbGaaGimaiaaiYcacaaIXaGaaGykaiaaiUdaca aMf8UaamyEamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGyk aiaai2dacaaIWaGaaGilaiaaywW7caWG0bGaeyicI4SaaG4waiaaig dacaaISaGaaGOmaiaai2facaaI7aaaaa@6A61@

y 2 (t)=2t,t[1,0); y 2 (t)=2 t 2 (t1),t[0,1); y 2 (t)=2(1t),t[1,2]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiabgkHiTiaaikdacaWG0bGaaGil aiaaywW7caWG0bGaeyicI4SaaG4waiabgkHiTiaaigdacaaISaGaaG imaiaaiMcacaaI7aGaaGzbVlaadMhadaWgaaWcbaGaaGOmaaqabaGc caaIOaGaamiDaiaaiMcacaaI9aGaaGOmaiaadshadaahaaWcbeqaai aaikdaaaGccaaIOaGaamiDaiabgkHiTiaaigdacaaIPaGaaGilaiaa ywW7caWG0bGaeyicI4SaaG4waiaaicdacaaISaGaaGymaiaaiMcaca aI7aGaaGzbVlaadMhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiD aiaaiMcacaaI9aGaaGOmaiaaiIcacaaIXaGaeyOeI0IaamiDaiaaiM cacaaISaGaaGzbVlaadshacqGHiiIZcaaIBbGaaGymaiaaiYcacaaI YaGaaGyxaiaai6caaaa@6F1B@

Понятно, что y 1 + (t)= y 2 + (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaa0baaSqaaiaaigdaaeaacq GHRaWkaaGccaaIOaGaamiDaiaaiMcacaaI9aGaamyEamaaDaaaleaa caaIYaaabaGaey4kaScaaOGaaGikaiaadshacaaIPaaaaa@3CE5@ , tT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4Saamivaaaa@3513@ , т.е. начальные состояния ( x 01 1 , x 02 1 )( x 01 2 , x 02 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamiEamaaDaaaleaacaaIWa GaaGymaaqaaiaaigdaaaGccaaISaGaamiEamaaDaaaleaacaaIWaGa aGOmaaqaaiaaigdaaaGccaaIPaGaeyiyIKRaaGikaiaadIhadaqhaa WcbaGaaGimaiaaigdaaeaacaaIYaaaaOGaaGilaiaadIhadaqhaaWc baGaaGimaiaaikdaaeaacaaIYaaaaOGaaGykaaaa@454E@  порождают одну и ту же выходную функцию. Поэтому данная система положительно ненаблюдаема.

Простые примеры показывают, что только одно условие вполне линейной независимости системы функций { h 1 (t),, h n (t)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI7bGaamiAamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGykaiaaiYcacqWIMaYscaaISaGaamiA amaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2haaa a@3F07@  на отрезке T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@  не гарантирует положительную наблюдаемость системы (10). Следовательно, положительная наблюдаемость и дифференциальная наблюдаемость [5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 7] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  существенно различные свойства систем наблюдения и одно из другого не следуют.

Лемма 2.  Для того чтобы у каждого нетривиального многочлена ω(g,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHjpWDcaaIOaGaam4zaiaaiYcaca WG0bGaaGykaaaa@378A@  по системе функций { h 1 (t),, h n (t)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI7bGaamiAamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGykaiaaiYcacqWIMaYscaaISaGaamiA amaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2haaa a@3F07@  существовал хотя бы один корень-узел на промежутке ( t 0 , t 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa @37AB@ , необходимо и достаточно, чтобы одновременно выполнялись два неравенства:

min ||g||=1,g n max tT ω(g,t)>0и max ||g||=1,g n min tT ω(g,t)<0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaGfqbqabSqaaiaaiYhacaaI8bGaam 4zaiaaiYhacaaI8bGaaGypaiaaigdacaaISaGaaGjbVlaadEgacqGH iiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1 risnaaCaaabeqaaiaad6gaaaaabeGcbaGaciyBaiaacMgacaGGUbaa amaawafabeWcbaGaamiDaiabgIGiolaadsfaaeqakeaaciGGTbGaai yyaiaacIhaaaGaeqyYdCNaaGikaiaadEgacaaISaGaamiDaiaaiMca caaI+aGaaGimaiaaywW7caqG4qGaaGzbVpaawafabeWcbaGaaGiFai aaiYhacaWGNbGaaGiFaiaaiYhacaaI9aGaaGymaiaaiYcacaaMe8Ua am4zaiabgIGiolab=1risnaaCaaabeqaaiaad6gaaaaabeGcbaGaci yBaiaacggacaGG4baaaiaaysW7daGfqbqabSqaaiaadshacqGHiiIZ caWGubaabeGcbaGaciyBaiaacMgacaGGUbaaaiabeM8a3jaaiIcaca WGNbGaaGilaiaadshacaaIPaGaaGipaiaaicdacaaIUaaaaa@7EE9@

Доказательство леммы 2 следует из свойств непрерывных функций.

Теорема 2. Если функции h 1 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaaaaa@35F9@ , ..., h n (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaaaaa@3631@  образуют систему функций Чебышёва порядка n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaeyOeI0IaaGymaaaa@3458@  на отрезке T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@ , то система (10) не является положительно наблюдаемой.

Доказательство теоремы 0 следует из того факта, что в линейной оболочке всякой системы функций Чебышёва существуют [8, 9] как строго положительные, так и строго отрицательные многочлены на T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@ .

Исходя из теоремы 2, несложно привести примеры систем наблюдения, которые не являются положительно наблюдаемыми. Например, система (10) вида x ˙ i (t)= x i+1 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaadaWgaaWcbaGaamyAaa qabaGccaaIOaGaamiDaiaaiMcacaaI9aGaamiEamaaBaaaleaacaWG PbGaey4kaSIaaGymaaqabaGccaaIOaGaamiDaiaaiMcaaaa@3D28@ , i= 1,n1 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGUbGaeyOeI0IaaGymaaaaaaa@378F@ , x ˙ n (t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaaceWG4bGbaiaadaWgaaWcbaGaamOBaa qabaGccaaIOaGaamiDaiaaiMcacaaI9aGaaGimaaaa@37CB@ , y(t)= x 1 (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bGaaGikaiaadshacaaIPaGaaG ypaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMca aaa@3A2C@  наблюдаема на любом отрезке [ t 0 , t 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGyxaaaa @3812@ , t 0 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaeyyzImRaaGimaaaa@3626@ , но она не является положительно наблюдаемой по выходу y + (t)=[ x 1 (t )] + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaWbaaSqabeaacqGHRaWkaa GccaaIOaGaamiDaiaaiMcacaaI9aGaaG4waiaadIhadaWgaaWcbaGa aGymaaqabaGccaaIOaGaamiDaiaaiMcacaaIDbWaaWbaaSqabeaacq GHRaWkaaaaaa@3E20@  на отрезке [ t 0 , t 1 ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGyxaaaa @3812@ , так как соответствующие этой системе наблюдения функции { h 1 (t),, h n (t)}={1,t,, t n1 /(n1)!} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI7bGaamiAamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGykaiaaiYcacqWIMaYscaaISaGaamiA amaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2haca aI9aGaaG4EaiaaigdacaaISaGaamiDaiaaiYcacqWIMaYscaaISaGa amiDamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccaaIVaGaaG ikaiaad6gacqGHsislcaaIXaGaaGykaiaaigcacaaI9baaaa@5001@  образуют систему функций Чебышёва порядка n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaeyOeI0IaaGymaaaa@3458@  на T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@ .

Пусть G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zq8hbaa@3D09@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  множество всех невырожденных при каждом tT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4Saamivaaaa@3513@  квадратных n×n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaey41aqRaamOBaaaa@35BA@  -матриц G(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGhbGaaGikaiaadshacaaIPaaaaa@34E7@  с непрерывно дифференцируемыми элементами. Действие группы G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zq8hbaa@3D09@  на паре (A,c) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamyqaiaaiYcacaWGJbGaaG ykaaaa@3586@  определим стандартным образом: G*(A,c)=( G 1 (t)A(t)G(t) G 1 (t) G ˙ (t),c(t)G(t)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGhbGaaGOkaiaaiIcacaWGbbGaaG ilaiaadogacaaIPaGaaGypaiaaiIcacaWGhbWaaWbaaSqabeaacqGH sislcaaIXaaaaOGaaGikaiaadshacaaIPaGaamyqaiaaiIcacaWG0b GaaGykaiaadEeacaaIOaGaamiDaiaaiMcacqGHsislcaWGhbWaaWba aSqabeaacqGHsislcaaIXaaaaOGaaGikaiaadshacaaIPaGabm4ray aacaGaaGikaiaadshacaaIPaGaaGilaiaadogacaaIOaGaamiDaiaa iMcacaWGhbGaaGikaiaadshacaaIPaGaaGykaaaa@54D8@ , GG. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGhbGaeyicI48efv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqaacqWFge=rcaaIUaaaaa@4011@

 Непосредственно из леммы 2.3 монографии [7] следует, что свойство положительной наблюдаемости инвариантно относительно действия группы G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zq8hbaa@3D09@  на множестве систем наблюдения (A,c) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamyqaiaaiYcacaWGJbGaaG ykaaaa@3586@  с непрерывными элементами.

Рассмотрим задачу положительной наблюдаемости для равномерно наблюдаемых [7] систем (A,c) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamyqaiaaiYcacaWGJbGaaG ykaaaa@3586@ . Всякая равномерно наблюдаемая пара (A,c) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamyqaiaaiYcacaWGJbGaaG ykaaaa@3586@  является [7] дифференциально наблюдаемой, и поэтому система функций { h 1 (t),, h n (t)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI7bGaamiAamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG0bGaaGykaiaaiYcacqWIMaYscaaISaGaamiA amaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2haaa a@3F07@  вполне линейно независима на T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@ . Далее нам понадобится отображение, определённое по правилу

f(A,c)(t)= s n (t) S 1 (t), s n (t)= s n1 (t)A(t)+ s ˙ n1 (t),tT, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGMbGaaGikaiaadgeacaaISaGaam 4yaiaaiMcacaaIOaGaamiDaiaaiMcacaaI9aGaam4CamaaBaaaleaa caWGUbaabeaakiaaiIcacaWG0bGaaGykaiaadofadaahaaWcbeqaai abgkHiTiaaigdaaaGccaaIOaGaamiDaiaaiMcacaaISaGaaGzbVlaa dohadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiDaiaaiMcacaaI9a Gaam4CamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaIOaGa amiDaiaaiMcacaWGbbGaaGikaiaadshacaaIPaGaey4kaSIabm4Cay aacaWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiIcacaWG 0bGaaGykaiaaiYcacaaMf8UaamiDaiabgIGiolaadsfacaaISaaaaa@6161@

которое, как показано в [7], является полным инвариантом относительно действия группы G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zq8hbaa@3D09@  на множестве равномерно наблюдаемых систем. Обозначим через β i (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHYoGydaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiDaiaaiMcaaaa@36E0@ , i= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGPbGaaGypamaanaaabaGaaGymai aaiYcacaWGUbaaaaaa@35E7@ , компоненты n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbaaaa@32B0@  -вектор-функции f(A,c)(t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGMbGaaGikaiaadgeacaaISaGaam 4yaiaaiMcacaaIOaGaamiDaiaaiMcacaaIUaaaaa@3987@

Теорема 3. Пусть пара (A,c) равномерно наблюдаема на отрезке T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@ . Система (1) положительно наблюдаема на T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@  тогда и только тогда, когда каждое нетривиальное решение скалярного дифференциального уравнения ξ (n) (t)= β 1 (t)ξ(t)+ β 2 (t) ξ (1) (t)++ β n (t) ξ (n1) (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH+oaEdaahaaWcbeqaaiaaiIcaca WGUbGaaGykaaaakiaaiIcacaWG0bGaaGykaiaai2dacqaHYoGydaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacqaH+oaEcaaIOa GaamiDaiaaiMcacqGHRaWkcqaHYoGydaWgaaWcbaGaaGOmaaqabaGc caaIOaGaamiDaiaaiMcacqaH+oaEdaahaaWcbeqaaiaaiIcacaaIXa GaaGykaaaakiaaiIcacaWG0bGaaGykaiabgUcaRiabl+UimjabgUca Riabek7aInaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykai abe67a4naaCaaaleqabaGaaGikaiaad6gacqGHsislcaaIXaGaaGyk aaaakiaaiIcacaWG0bGaaGykaaaa@5FC2@  имеет хотя бы один корень-узел на интервале (t0,t1) 

Доказательство теоремы 3 основано на возможности преобразования равномерно наблюдаемой пары (A,c) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamyqaiaaiYcacaWGJbGaaG ykaaaa@3586@  с помощью преобразования z(t)=S(t)x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG6bGaaGikaiaadshacaaIPaGaaG ypaiaadofacaaIOaGaamiDaiaaiMcacaWG4bGaaGikaiaadshacaaI Paaaaa@3C72@ , tT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4Saamivaaaa@3513@ , к системе вида (10) с матрицей в форме Фробениуса [7] и вектором c(t) S 1 (t)=(1,0,,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGJbGaaGikaiaadshacaaIPaGaam 4uamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIcacaWG0bGaaGyk aiaai2dacaaIOaGaaGymaiaaiYcacaaIWaGaaGilaiablAciljaaiY cacaaIWaGaaGykaaaa@41B7@ .

Теорема 4. Пусть пара (A,c) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamyqaiaaiYcacaWGJbGaaG ykaaaa@3586@  равномерно наблюдаема на отрезке T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@  и её полный инвариант f(A,c)(t)=( β 1 ,, β n )= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGMbGaaGikaiaadgeacaaISaGaam 4yaiaaiMcacaaIOaGaamiDaiaaiMcacaaI9aGaaGikaiabek7aInaa BaaaleaacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaeqOSdi2aaS baaSqaaiaad6gaaeqaaOGaaGykaiaai2daaaa@43AC@ , tT MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4Saamivaaaa@3513@ . Система (10) положительно наблюдаема тогда и только тогда, когда уравнение λ n λ β 1 λ n1 β n =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH7oaBdaahaaWcbeqaaiaad6gaaa GccqGHsislcqaH7oaBcqaHYoGydaWgaaWcbaGaaGymaaqabaGccqGH sislcqWIVlctcqGHsislcqaH7oaBdaahaaWcbeqaaiaad6gacqGHsi slcaaIXaaaaOGaeqOSdi2aaSbaaSqaaiaad6gaaeqaaOGaaGypaiaa icdaaaa@4667@  не имеет действительных корней.

Доказательство теоремы 4 следует из соотношения s n (t) S 1 (t)=( β 1 ,, β n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGZbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaGaam4uamaaCaaaleqabaGaeyOeI0IaaGym aaaakiaaiIcacaWG0bGaaGykaiaai2dacaaIOaGaeqOSdi2aaSbaaS qaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcacqaHYoGydaWgaaWc baGaamOBaaqabaGccaaIPaaaaa@4567@ .

Оказывается, что задача положительной наблюдаемости тесно связана с проблемой неосцилляции [1].

Теорема 5. Если пара (A,c) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamyqaiaaiYcacaWGJbGaaG ykaaaa@3586@  равномерно наблюдаема на отрезке T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@  и дифференциальное уравнение ξ (n) (t)= β 1 (t)ξ(t)+ β 2 (t) ξ (1) (t)++ β n (t) ξ (n1) (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH+oaEdaahaaWcbeqaaiaaiIcaca WGUbGaaGykaaaakiaaiIcacaWG0bGaaGykaiaai2dacqaHYoGydaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacqaH+oaEcaaIOa GaamiDaiaaiMcacqGHRaWkcqaHYoGydaWgaaWcbaGaaGOmaaqabaGc caaIOaGaamiDaiaaiMcacqaH+oaEdaahaaWcbeqaaiaaiIcacaaIXa GaaGykaaaakiaaiIcacaWG0bGaaGykaiabgUcaRiabl+UimjabgUca Riabek7aInaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykai abe67a4naaCaaaleqabaGaaGikaiaad6gacqGHsislcaaIXaGaaGyk aaaakiaaiIcacaWG0bGaaGykaaaa@5FC2@ неосцилляционно, то система (1) не является положительно наблюдаемой системой.

Доказательство теоремы 5 следует из теорем 0, 0 и свойств неосцилляции [10].

Литература. 1. Красовский, Н.H. Теория управления движением / Н.H. Красовский. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  М. : Наука, 1968. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  476 с. 2. Brammer, R.F. Geometrically constrained observability / R.F. Brammer // SIAM J. Control. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  1974. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  V. 12, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  3. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  P. 449 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 459. 3. Sontag, E.D. Mathematical Control Theory / E.D. Sontag. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  Berlin : Springer-Verlag, 1990. 4. Астровский, А.И. Положительная наблюдаемость линейных нестационарных систем / А.И. Астровский // Изв. НАН Беларуси. Сер. физ.-мат. наук. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  1999. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  2. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  С. 33 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 39. 5. Weiss, L. The concepts of differential controllability and differential observability / L. Weiss // J. Math. Anal. and Appl. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  1965. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  10. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  P. 442 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 449. 6. Silverman, L.M. Controllability and observability in time-variable linear systems / L.M. Silverman , H.E. Meadows // SIAM J. Control. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  1967. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  V. 5, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=zriaaa@3C64@  1. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  P. 64 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 73. 7. Астровский, А.И. Линейные системы с квазидифференцируемыми коэффициентами: управляемость и наблюдаемость движений / А.И. Астровский, И.В. Гайшун. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  Минск : Беларус. навука, 2013. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  214 с. 8. Карлин, С. Чебышевские системы и их применение в анализе и статистике / С. Карлин, В. Стадден; пер. с англ. под ред. С.М. Ермолова. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  М. : Наука, 1976. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  568 с. 9. Крейн, М.Г. Проблема моментов Маркова и экстремальные задачи / М.Г. Крейн, А.А. Нудельман. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  М. : Наука, 1973. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  551 с. 10. Левин, А.Ю. Неосцилляция решений уравнения x (n) + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4bWaaWbaaSqabeaacaaIOaGaam OBaiaaiMcaaaGccqGHRaWkaaa@362B@   p 1 (t) x (n1) ++ p n (t)x=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGWbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaIPaGaamiEamaaCaaaleqabaGaaGikaiaad6ga cqGHsislcaaIXaGaaGykaaaakiabgUcaRiablAciljabgUcaRiaadc hadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiDaiaaiMcacaWG4bGa aGypaiaaicdaaaa@4515@  / А.Ю. Левин // Успехи мат. наук. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  1969. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  Т. 24. Вып. 2 (146). MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=rbiaaa@3C61@  С. 43 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefeKCPfgBG4 uyYj3B3bacfaqcLbyaqaaaaaaaaaWdbiaa=nbiaaa@3C60@ 96.

 

1 Семинар основан академиками РАН С.В. Емельяновым и С.К. Коровиным.

×

About the authors

А. В. Ильин

Author for correspondence.
Email: deq@cs.msu.ru
Russian Federation

References

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).