On regularization of the classical optimality conditions in the convex optimization problems for Volterra-type systems with operator constraints

Cover Page

Cite item

Full Text

Abstract

We consider the regularization of classical optimality conditions (COCs) — the Lagrange principle (LP) and the Pontryagin maximum principle (PMP) — in a convex optimal control problem with an operator equality-constraint and functional inequality-constraints. The controlled system is specified by a linear functional-operator equation of the second kind of general form in the space L2m, the main operator on the right side of the equation is assumed to be quasinilpotent.The objective functional of the problem is only convex (perhaps not strongly convex). Obtaining regularized COCs is based on the dual regularization method. In this case, two regularization parameters are used, one of which is “responsible” for the regularization of the dual problem, the other is contained in the strongly convex regularizing Tikhonov addition to the target functional of the original problem, thereby ensuring the correctness of the problem of minimizing the Lagrange function. The main purpose of regularized LP and PMP is the stable generation of minimizing approximate solutions in the sense of J. Warga. Regularized COCs: 1) are formulated as existence theorems for minimizing approximate solutions in the original problem with a simultaneous constructive representation of these solutions; 2) expressed in terms of regular classical functions of Lagrange and Hamilton–Pontryagin; 3) “overcome” the properties of the ill-posedness of the COCs and provide regularizing algorithms for solving optimization problems. Based on the perturbation method, an important property of the regularized COCs obtained in the work is discussed in sufficient detail, namely that “in the limit” they lead to their classical analogues. As an application of the general results obtained in the paper, a specific example of an optimal control problem associated with an integro-differential equation of the transport equation type is considered, a special case of which is a certain final observation problem. 

Full Text

ВВЕДЕНИЕ

Задачи оптимизационной теории, в основе которой лежат классические условия оптимальности, можно рассматривать с двух (в известном смысле принципиально разных) позиций. Если задача такова, что её исходные данные можно и нужно считать известными точно, то мы попадаем в “привычную сферу действия” теории КУО [1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ 4] (эта теория, будучи обязанной своим рождением прежде всего потребностям самых различных практических приложений, за прошедшие столетия со времён П. Ферма, Л. Эйлера, Ж. Лагранжа получила фундаментальное развитие, её методы вошли в основной аппарат многих разделов современной математики, других естественных наук). Но оптимизационная задача может быть и такой, что предположение о точном задании её исходных данных находится в противоречии с её содержательным смыслом, и мы вынуждены учитывать возможную погрешность этих данных. Такие задачи часто встречаются в современном естествознании [5]. В этом случае неточность в задании их исходных данных, во-первых, резко диссонирует с основным предположением классической теории, требующим точного знания исходных данных оптимизационных задач при получении КУО, и, во-вторых, порождает необходимость учёта свойственной задачам условной оптимизации некорректности [6], влекущей, как следствие, некорректность самих КУО и потребность в их регуляризации (см., например, [7 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ 10] и библиографию в этих работах).

Как известно, изучение различных связанных с КУО вопросов лежит в основе развития теории оптимизации распределённых систем. Многообразие, сложность и актуальность этих вопросов вот уже более шести десятков лет постоянно привлекают внимание исследователей [11 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ 13]. Отличительной чертой данной работы, продолжающей линию работ [9, 10], является исследование вопросов регуляризации КУО MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  принципа Лагранжа и принципа максимума Понтрягина[1] — MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  в выпуклых задачах оптимального управления с операторными ограничениями для линейных распределённых систем вольтеррова типа. Так мы называем управляемые системы, которые могут быть описаны линейными функциональными (иначе, функционально-операторными) уравнениями второго рода общего вида с квазинильпотентным основным линейным оператором правой части. Подобным свойством обладают, прежде всего, различного рода вольтерровы операторы" href="#_ftn2" name="_ftnref2">[2]. Поэтому указанные уравнения можно назвать функциональными уравнениями вольтеррова типа. К таким уравнениям естественным образом (обращением главной части) сводятся самые разнообразные начально-краевые задачи для различных уравнений с частными производными: гиперболических, параболических, интегро-дифференциальных, систем таких уравнений, уравнений с запаздываниями разного рода и др. (см., например, конкретные примеры в [26, гл. 2], обзоры в [26, 28]). Это позволило в настоящей статье получить регуляризованные ПЛ и ПМП единообразно для широкого класса распределённых оптимизационных задач. При этом, как и в [9, 10], существенным образом используется предложенное нами ранее понятие равностепенной квазинильпотентности семейства операторов (историю вопроса см. в [28]). В качестве конкретного иллюстрирующего примера мы рассматриваем задачу оптимального управления, связанную с интегро-дифференциальным уравнением типа уравнения переноса, частным случаем которой является некоторая обратная задача финального наблюдения.

Главное назначение получаемых в данной работе и выражаемых в терминах регулярных классических функций Лагранжа и Гамильтона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ Понтрягина регуляризованных КУО MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  устойчивое конструктивное генерирование в рассматриваемой задаче оптимального управления обобщённых минимизирующих последовательностей MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  минимизирующих приближённых решений (МПР)[3] в смысле Дж. Варги [29]. Регуляризованные КУО формулируются как теоремы существования в исходной задаче МПР, состоящих из минималей функции Лагранжа, двойственные переменные для которой генерируются в соответствии с процедурой регуляризации двойственной задачи. Ниже, как и в [9, 10], управляемая система вольтеррова типа задаётся линейным функционально-операторным уравнением второго рода общего вида в пространстве L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGTbaaaaaa@3675@ . При этом, как и в [9, 10], операторное ограничение-равенство задано в некотором гильбертовом пространстве, а для упрощения изложения и в соответствии с традициями теории оптимального управления множество допустимых управлений считаем ограниченным.

Данная работа является продолжением работ [9, 10]. Минимизируемый функционал в ней предполагается лишь выпуклым и не обязательно сильно выпуклым. Отметим, что регуляризация КУО в выпуклых задачах оптимального управления с не сильно выпуклыми целевыми функционалами рассматривалась нами в статье [30]. Покажем, в чём сходство и в чём существенное различие получаемых ниже и в [9, 10, 30] результатов.

В рассматриваемой ниже задаче, как и в [9, 10, 30], МПР конструируются из экстремалей (минималей) её функции Лагранжа, взятых при значениях двойственных переменных из некоторой последовательности, вырабатываемой соответствующей процедурой регуляризации двойственной задачи. При этом, как и в [10, 30], в качестве процедуры регуляризации двойственной задачи (эта задача является вогнутой) используется тихоновская стабилизация (см., например, [6, гл. 9]). Отметим, что в [9] с этой целью применяется процедура так называемой итеративной регуляризации [31].

Говоря о различиях, подчеркнём прежде всего, что целевой функционал в данной работе является функционалом общего вида и предполагается лишь выпуклым, тогда как в [9, 10] минимизируемые функционалы являются сильно выпуклыми с аддитивно разделёнными управлением и “фазой”. Далее, чтобы охарактеризовать отличие результатов данной статьи от результатов [30], целесообразно отметить сначала различие подходов [10] и [30]. В случае сильно выпуклого целевого функционала (как в [10]) сильно выпуклой по исходной переменной является и функция Лагранжа и, как следствие, однозначно и корректно определяются элементы МПР, соответствующие выбранной процедуре регуляризации двойственной задачи. В отсутствие же сильной выпуклости функционала качества (как в [30]) и, как следствие, в отсутствие сильной выпуклости функции Лагранжа по исходной переменной при ограниченном множестве допустимых элементов гарантируется лишь существование (но, вообще говоря, не единственность) элементов МПР (как элементов из множества минималей функции Лагранжа, взятых при соответствующих значениях двойственных переменных). В такой ситуации генерирование МПР в силу регуляризованных КУО в существенной степени теряет свою конструктивность. По этой причине ниже в преодоление указанного недостатка регуляризованных КУО в неитерационной форме [30], следуя методу работы [32], вместо одного используем два параметра регуляризации. Один из них, как и в [10, 30], “отвечает” за регуляризацию двойственной задачи, другой содержится в сильно выпуклой регуляризирующей тихоновской добавке к целевому функционалу исходной задачи, обеспечивая тем самым корректность задачи минимизации функции Лагранжа. Так, отказываясь от существенно используемого в [9, 10] условия сильной выпуклости функционала качества, мы “преодолеваем” допускаемую в [30] некорректность задачи минимизации функции Лагранжа. Последняя является базовой задачей во всех формулируемых ниже регуляризованных КУО.

Авторы настоящей статьи считают, что к совокупности методов преодоления свойств некорректности КУО следует относиться как к отдельному разделу теории некорректных задач. Проверка КУО на корректность является самостоятельной сложной математической задачей. В то же время их регуляризация даёт новый класс регуляризирующих алгоритмов MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  регуляризованные КУО, обеспечивающие устойчивое генерирование МПР в оптимизационных задачах со сложными операторными ограничениями для целей практического решения большого числа актуальных естественнонаучных задач. Центральным при этом является введённое ранее в [32] и ориентированное на задачи условной оптимизации понятие МПР-образующего алгоритма (см. ниже определение )[4]. В своей основе эти новые регуляризирующие алгоритмы, формулируемые в терминах регулярных классических функций Лагранжа и Гамильтона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ Понтрягина, опираются прежде всего на методы теории регуляризации и теории КУО, являясь, таким образом, продуктами “взаимовыгодного пересечения” двух указанных направлений математической теории.

Выделим важные на наш взгляд особенности получаемых в работе регуляризованных КУО, подчеркивающие актуальность формулируемых ниже результатов (связанные с этим подробности и поясняющие комментарии можно найти в [7 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ 10]). Регуляризованные КУО: 1) не связаны с “труднопроверяемыми” условиями, используемыми обычно для гарантии выполнимости и устойчивости их классических аналогов; 2) являются секвенциальными обобщениями классических аналогов MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  своих предельных вариантов, сохраняют их общую структуру и могут трактоваться как условия оптимальности, выраженные в секвенциальной форме; 3) “хорошо cопрягаются” с методом возмущений (см., например, [1, п. 3.3.2]), позволяющим, используя для исследования оптимизационных задач аппарат выпуклого анализа, связать свойства сходимости регуляризованных КУО с субдифференциальными свойствами функций значений этих задач (подробнее в п. 5).

Примем следующие обозначения и соглашения: n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaWdaiab=1risnaaCaaa leqabaGaamOBaaaaaaa@3FA0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  пространство n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGUb aaaa@34BC@  -векторов-столбцов; , n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHPm s4cqGHflY1caaISaGaeyyXICTaeyOkJe=aaSbaaSqaaiaad6gaaeqa aaaa@3DB5@  и n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucqGHflY1cqWFLicudaWgaaWcbaGa amOBaaqabaaaaa@3E05@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  евклидовы скалярное произведение и норма в n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaWdaiab=1risnaaCaaa leqabaGaamOBaaaaaaa@3FA0@ ; векторы, если не оговорено противное, считаются столбцами; * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIQa aaaa@347D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  знак сопряжения и транспонирования; Π n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHGo aucqGHckcZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGab aiab=1risnaaCaaaleqabaGaamOBaaaaaaa@431A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  ограниченное и измеримое по Лебегу множество, играющее роль основного множества изменения независимых переменных, элементы которого обозначаем через t{ t 1 ,..., t n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b GaeyyyIORaaG4EaiaadshadaahaaWcbeqaaiaaigdaaaGccaaISaGa aGOlaiaai6cacaaIUaGaaGilaiaadshadaahaaWcbeqaaiaad6gaaa GccaaI9baaaa@4039@ ; L p (Π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaSbaaSqaaiaadchaaeqaaOGaaGikaiabfc6aqjaaiMcaaaa@38A8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  лебегово пространство со стандартной нормой ( 1p+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIXa GaeyizImQaamiCaiabgsMiJkabgUcaRiabg6HiLcaa@3B36@  ); L p m L p m (Π) ( L p (Π)) m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaadchaaeaacaWGTbaaaOGaeyyyIORaamitamaaDaaa leaacaWGWbaabaGaamyBaaaakiaaiIcacqqHGoaucaaIPaGaeyyyIO RaaGikaiaadYeadaWgaaWcbaGaamiCaaqabaGccaaIOaGaeuiOdaLa aGykaiaaiMcadaahaaWcbeqaaiaad2gaaaaaaa@477F@  ( 1p+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIXa GaeyizImQaamiCaiabgsMiJkabgUcaRiabg6HiLcaa@3B36@  ); p,m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucqGHflY1cqWFLicudaWgaaWcbaGa amiCaiaaiYcacaWGTbaabeaaaaa@3FAF@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  стандартная норма прямого произведения в L p m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaadchaaeaacaWGTbaaaaaa@36AE@ ; , 2,m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHPm s4cqGHflY1caaISaGaeyyXICTaeyOkJe=aaSbaaSqaaiaaikdacaaI SaGaamyBaaqabaaaaa@3F26@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  стандартное скалярное произведение в L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGTbaaaaaa@3675@ ; L p m×l L p m×l (Π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaadchaaeaacaWGTbGaey41aqRaamiBaaaakiabggMi 6kaadYeadaqhaaWcbaGaamiCaaqaaiaad2gacqGHxdaTcaWGSbaaaO GaaGikaiabfc6aqjaaiMcaaaa@4463@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  пространство m×l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGTb Gaey41aqRaamiBaaaa@37C3@  -матриц-функций с элементами из L p (Π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaSbaaSqaaiaadchaaeqaaOGaaGikaiabfc6aqjaaiMcaaaa@38A8@ ; p,m×l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucqGHflY1cqWFLicudaWgaaWcbaGa amiCaiaaiYcacaWGTbGaey41aqRaamiBaaqabaaaaa@42B7@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  стандартная норма прямого произведения в L p m×l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaadchaaeaacaWGTbGaey41aqRaamiBaaaaaaa@39B6@ ; H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGib aaaa@3496@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  некоторое гильбертово пространство со скалярным произведением , H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHPm s4cqGHflY1caaISaGaeyyXICTaeyOkJe=aaSbaaSqaaiaadIeaaeqa aaaa@3D8F@  и нормой H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucqGHflY1cqWFLicudaWgaaWcbaGa amisaaqabaaaaa@3DDF@ ; χ [α,β] (ξ){1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHhp WydaWgaaWcbaGaaG4waiabeg7aHjaaiYcacqaHYoGycaaIDbaabeaa kiaaiIcacqaH+oaEcaaIPaGaeyyyIORaaG4EaiaaigdacaaISaaaaa@42DF@   ξ[α,β]; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH+o aEcqGHiiIZcaaIBbGaeqySdeMaaGilaiabek7aIjaai2facaaI7aaa aa@3D97@   0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIWa GaaGilaaaa@3539@   ξ[α,β]}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH+o aEcqGHjiYZcaaIBbGaeqySdeMaaGilaiabek7aIjaai2facaaI9bGa aGilaaaa@3E91@   ξ[0,1], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH+o aEcqGHiiIZcaaIBbGaaGimaiaaiYcacaaIXaGaaGyxaiaaiYcaaaa@3BBD@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  характеристическая функция подотрезка [α,β] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIBb GaeqySdeMaaGilaiabek7aIjaai2faaaa@398B@  отрезка [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIBb GaaGimaiaaiYcacaaIXaGaaGyxaaaa@37C0@ ; + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaWdaiab=1risnaaBaaa leaacqGHRaWkaeqaaaaa@3F8E@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  множество всех неотрицательных чисел.

1. ПОСТАНОВКА ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ 

1.1. Базовая оптимизационная задача

Пусть заданы натуральные числа m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGTb aaaa@34BB@ , n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGUb aaaa@34BC@ , s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGZb aaaa@34C1@ ; функция c(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGJb GaaGikaiaadshacaaIPaaaaa@370F@ , tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b GaeyicI4SaeuiOdaLaaGilaaaa@387A@  из класса L 2 m L 2 m (Π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGTbaaaOGaeyyyIORaamitamaaDaaa leaacaaIYaaabaGaamyBaaaakiaaiIcacqqHGoaucaaIPaaaaa@3DE1@ ; линейный ограниченный оператор (ЛОО) A: L 2 m L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGbb GaaGOoaiaadYeadaqhaaWcbaGaaGOmaaqaaiaad2gaaaGccqGHsgIR caWGmbWaa0baaSqaaiaaikdaaeaacaWGTbaaaaaa@3CA2@  с нулевым спектральным радиусом; ЛОО B: L 2 s L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGcb GaaGOoaiaadYeadaqhaaWcbaGaaGOmaaqaaiaadohaaaGccqGHsgIR caWGmbWaa0baaSqaaiaaikdaaeaacaWGTbaaaaaa@3CA9@ . Рассмотрим линейное функциональное уравнение

                              z(t)=A[z](t)+B[u](t)+c(t),tΠ,z L 2 m ,u L 2 s , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b GaaGikaiaadshacaaIPaGaaGypaiaadgeacaaIBbGaamOEaiaai2fa caaIOaGaamiDaiaaiMcacqGHRaWkcaWGcbGaaG4waiaadwhacaaIDb GaaGikaiaadshacaaIPaGaey4kaSIaam4yaiaaiIcacaWG0bGaaGyk aiaaiYcacaaMf8UaamiDaiabgIGiolabfc6aqjaaiYcacaaMf8Uaam OEaiabgIGiolaadYeadaqhaaWcbaGaaGOmaaqaaiaad2gaaaGccaaI SaGaaGzbVlaadwhacqGHiiIZcaWGmbWaa0baaSqaaiaaikdaaeaaca WGZbaaaOGaaGilaaaa@5EC1@        (1)

 считая u() MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaaGikaiabgwSixlaaiMcaaaa@3872@  управляющей функцией (управлением). Ввиду квазинильпотентности оператора A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGbb aaaa@348F@  уравнение (1) имеет для каждого u() L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaa0baaSqaaiaaikda aeaacaWGZbaaaaaa@3CA8@  единственное в L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGTbaaaaaa@3675@  решение z(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b GaaGikaiaadshacaaIPaaaaa@3726@ , tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b GaeyicI4SaeuiOdaLaaGilaaaa@387A@  причём

                                                z(t)=S[B[u]+c](t),tΠ,u L 2 s , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b GaaGikaiaadshacaaIPaGaaGypaiaadofacaaIBbGaamOqaiaaiUfa caWG1bGaaGyxaiabgUcaRiaadogacaaIDbGaaGikaiaadshacaaIPa GaaGilaiaaywW7caWG0bGaeyicI4SaeuiOdaLaaGilaiaaywW7caWG 1bGaeyicI4SaamitamaaDaaaleaacaaIYaaabaGaam4CaaaakiaaiY caaaa@50B9@          (2)

 где S: L 2 m L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGtb GaaGOoaiaadYeadaqhaaWcbaGaaGOmaaqaaiaad2gaaaGccqGHsgIR caWGmbWaa0baaSqaaiaaikdaaeaacaWGTbaaaaaa@3CB4@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  ЛОО MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  сумма ряда Неймана S[y] i=0 A i [y] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGtb GaaG4waiaadMhacaaIDbGaeyyyIO7aaabmaeqaleaacaWGPbGaaGyp aiaaicdaaeaacqGHEisPa0GaeyyeIuoakiaadgeadaahaaWcbeqaai aadMgaaaGccaaIBbGaamyEaiaai2faaaa@43D6@ , y L 2 m . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG5b GaeyicI4SaamitamaaDaaaleaacaaIYaaabaGaamyBaaaakiaai6ca aaa@39B9@  Отвечающее управлению u() MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaaGikaiabgwSixlaaiMcaaaa@3872@  решение z() MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b GaaGikaiabgwSixlaaiMcaaaa@3877@  уравнения (1), задаваемое формулой (2), обозначаем z u () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b WaaSbaaSqaaiaadwhaaeqaaOGaaGikaiabgwSixlaaiMcaaaa@39A7@ .

Чтобы поставить для управляемой системы (1) задачу оптимального управления, будем считать, что заданы ЛОО A: L 2 m H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=bq8bjaaiQda caWGmbWaa0baaSqaaiaaikdaaeaacaWGTbaaaOGaeyOKH4Qaamisaa aa@453D@ , ЛОО B: L 2 s H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=XsicjaaiQda caWGmbWaa0baaSqaaiaaikdaaeaacaWGZbaaaOGaeyOKH4Qaamisaa aa@44A0@ , элемент CH MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=jq8djabgIGi olaadIeaaaa@415E@  и выпуклые функционалы J i [z,u]: L 2 m × L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=Lq8knaaBaaa leaacaWGPbaabeaakiaaiUfacaWG6bGaaGilaiaadwhacaaIDbGaaG OoaiaadYeadaqhaaWcbaGaaGOmaaqaaiaad2gaaaGccqGHxdaTcaWG mbWaa0baaSqaaiaaikdaaeaacaWGZbaaaOGaeyOKH46efv3ySLgznf gDOjdarCqr1ngBPrginfgDObcv39gaiuaacqGFDeIuaaa@59AC@  ( i= 0,k ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGimaiaaiYcacaWGRbaaaaaa@37EF@  ). Используя (2) как формулу подстановки, зададим на L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGZbaaaaaa@367B@  функционалы J i [u] J i [ z u ,u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb WaaSbaaSqaaiaadMgaaeqaaOGaaG4waiaadwhacaaIDbGaeyyyIO7e fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFjeVsda WgaaWcbaGaamyAaaqabaGccaaIBbGaamOEamaaBaaaleaacaWG1baa beaakiaaiYcacaWG1bGaaGyxaaaa@4C6C@  ( i= 0,k ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGimaiaaiYcacaWGRbaaaaaa@37EF@  ) и оператор G[u]A z u +B[u], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=zq8hjaaiUfa caWG1bGaaGyxaiabggMi6kab=bq8bnaadmaabaGaamOEamaaBaaale aacaWG1baabeaaaOGaay5waiaaw2faaiabgUcaRiab=XsicjaaiUfa caWG1bGaaGyxaiaaiYcaaaa@4EEE@   u L 2 s . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI4SaamitamaaDaaaleaacaaIYaaabaGaam4Caaaakiaai6ca aaa@39BB@  Функционалы J i [] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb WaaSbaaSqaaiaadMgaaeqaaOGaaG4waiabgwSixlaai2faaaa@39D2@  ( i= 0,k ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGimaiaaiYcacaWGRbaaaiaaiMcaaaa@38A2@  выпуклые. Пусть D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ebaa@3F0F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  выпуклое ограниченное и замкнутое множество пространства L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGZbaaaaaa@367B@ . Рассмотрим задачу оптимального управления системой (1) c минимизируемым целевым функционалом J 0 [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb WaaSbaaSqaaiaaicdaaeqaaOGaaG4waiaadwhacaaIDbaaaa@384E@  при ограничениях

                                       G[u]=C, J 1 [u]0,, J k [u]0,u L 2 s , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=zq8hjaaiUfa caWG1bGaaGyxaiaai2dacqWFce=qcaaISaGaaGzbVlaadQeadaWgaa WcbaGaaGymaaqabaGccaaIBbGaamyDaiaai2facqGHKjYOcaaIWaGa aGilaiaaywW7cqWIMaYscaaISaGaaGzbVlaadQeadaWgaaWcbaGaam 4AaaqabaGccaaIBbGaamyDaiaai2facqGHKjYOcaaIWaGaaGilaiaa ywW7caWG1bGaeyicI4SaamitamaaDaaaleaacaaIYaaabaGaam4Caa aakiaaiYcaaaa@629E@      (3)

 и множеством допустимых управлений D. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ejaai6ca aaa@3FC7@  Эту задачу символически запишем в виде

                                                          J 0 [u]min,(3),uD. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb WaaSbaaSqaaiaaicdaaeqaaOGaaG4waiaadwhacaaIDbGaeyOKH4Qa ciyBaiaacMgacaGGUbGaaGilaiaaywW7caaIOaGaaG4maiaaiMcaca aISaGaaGzbVlaadwhacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgz G0uy0Hgip5wzaGabaiab=nq8ejaai6caaaa@5233@        (4) 

1.2. Точная и приближённые оптимизационные задачи

Задача (4) полностью определяется набором своих исходных данных

                                                    f{A,B,c,A,B,C, J i (i= 0,k ¯ )}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb GaeyyyIORaaG4EaiaadgeacaaISaGaamOqaiaaiYcacaWGJbGaaGil amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae8haXh KaaGilaiab=XsicjaaiYcacqWFce=qcaaISaGae8xcXR0aaSbaaSqa aiaadMgaaeqaaOGaaGjbVlaaiIcacaWGPbGaaGypamaanaaabaGaaG imaiaaiYcacaWGRbaaaiaaiMcacaaI9bGaaGOlaaaa@580C@

Предположим, что точные исходные данные f 0 { A 0 , B 0 , c 0 , A 0 , B 0 , C 0 , J i 0 (i= 0,k ¯ )} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacaaIWaaaaOGaeyyyIORaaG4EaiaadgeadaahaaWc beqaaiaaicdaaaGccaaISaGaamOqamaaCaaaleqabaGaaGimaaaaki aaiYcacaWGJbWaaWbaaSqabeaacaaIWaaaaOGaaGilamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae8haXh0aaWbaaSqabe aacaaIWaaaaOGaaGilaiab=XsicnaaCaaaleqabaGaaGimaaaakiaa iYcacqWFce=qdaahaaWcbeqaaiaaicdaaaGccaaISaGae8xcXR0aa0 baaSqaaiaadMgaaeaacaaIWaaaaOGaaGjbVlaaiIcacaWGPbGaaGyp amaanaaabaGaaGimaiaaiYcacaWGRbaaaiaaiMcacaaI9baaaa@5EA6@  нам не известны, но мы можем оперировать с приближёнными исходными данными

                                           f δ { A δ , B δ , c δ , A δ , B δ , C δ , J i δ (i= 0,k ¯ )}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacqaH0oazaaGccqGHHjIUcaaI7bGaamyqamaaCaaa leqabaGaeqiTdqgaaOGaaGilaiaadkeadaahaaWcbeqaaiabes7aKb aakiaaiYcacaWGJbWaaWbaaSqabeaacqaH0oazaaGccaaISaWefv3y SLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFaeFqdaahaa Wcbeqaaiabes7aKbaakiaaiYcacqWFSeIqdaahaaWcbeqaaiabes7a KbaakiaaiYcacqWFce=qdaahaaWcbeqaaiabes7aKbaakiaaiYcacq WFjeVsdaqhaaWcbaGaamyAaaqaaiabes7aKbaakiaaysW7caaIOaGa amyAaiaai2dadaqdaaqaaiaaicdacaaISaGaam4AaaaacaaIPaGaaG yFaiaaiYcaaaa@66B4@

где δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azaaa@356E@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  меняющийся в некотором фиксированном полуинтервале (0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGimaaqabaGccaaIDbaa aa@3967@  числовой параметр, характеризующий близость приближённых данных f δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacqaH0oazaaaaaa@3684@  к точным данным f 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacaaIWaaaaaaa@3599@  в указанном ниже условиями Б и В смысле (положительным значениям параметра δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azaaa@356E@  соответствует приближённая оптимизационная задача вида (4) c данными f δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacqaH0oazaaaaaa@3684@ , а значению δ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcaaI9aGaaGimaaaa@36EF@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  точная оптимизационная задача вида (4) c данными f 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacaaIWaaaaaaa@3599@  ). Таким образом, считаем, что при каждом δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@  существуют следующие объекты: квазинильпотентный ЛОО A δ : L 2 m L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGbb WaaWbaaSqabeaacqaH0oazaaGccaaI6aGaamitamaaDaaaleaacaaI YaaabaGaamyBaaaakiabgkziUkaadYeadaqhaaWcbaGaaGOmaaqaai aad2gaaaaaaa@3E7E@ ; ЛОО B δ : L 2 s L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGcb WaaWbaaSqabeaacqaH0oazaaGccaaI6aGaamitamaaDaaaleaacaaI YaaabaGaam4CaaaakiabgkziUkaadYeadaqhaaWcbaGaaGOmaaqaai aad2gaaaaaaa@3E85@ ; функция c δ () L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGJb WaaWbaaSqabeaacqaH0oazaaGccaaIOaGaeyyXICTaaGykaiabgIGi olaadYeadaqhaaWcbaGaaGOmaaqaaiaad2gaaaaaaa@3E6C@ ; ЛОО A δ : L 2 m H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=bq8bnaaCaaa leqabaGaeqiTdqgaaOGaaGOoaiaadYeadaqhaaWcbaGaaGOmaaqaai aad2gaaaGccqGHsgIRcaWGibaaaa@4719@ ; ЛОО B δ : L 2 s H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=XsicnaaCaaa leqabaGaeqiTdqgaaOGaaGOoaiaadYeadaqhaaWcbaGaaGOmaaqaai aadohaaaGccqGHsgIRcaWGibaaaa@467C@ ; элемент C δ H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=jq8dnaaCaaa leqabaGaeqiTdqgaaOGaeyicI4Saamisaaaa@433A@ ; выпуклые функционалы J i δ [z,u]: L 2 m × L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=Lq8knaaDaaa leaacaWGPbaabaGaeqiTdqgaaOGaaG4waiaadQhacaaISaGaamyDai aai2facaaI6aGaamitamaaDaaaleaacaaIYaaabaGaamyBaaaakiab gEna0kaadYeadaqhaaWcbaGaaGOmaaqaaiaadohaaaGccqGHsgIRtu uDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGqbaiab+1risbaa @5B52@  ( i= 0,k ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGimaiaaiYcacaWGRbaaaaaa@37EF@  ).

Предполагаем, что выполняется

Условие А. Функционалы J i δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=Lq8knaaDaaa leaacaWGPbaabaGaeqiTdqgaaaaa@41DB@ , i= 0,k ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGimaiaaiYcacaWGRbaaaaaa@37EF@ , δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@ , липшицевы на каждом ограниченном множестве пространства L 2 m × L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGTbaaaOGaey41aqRaamitamaaDaaa leaacaaIYaaabaGaam4Caaaaaaa@3B48@ , причём липшицевость равномерна по параметру δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@ , т.е. соответствующие постоянные Липшица не зависят от δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@ .

Считаем также, что приближённые исходные данные f δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacqaH0oazaaaaaa@3684@ , δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3C90@ , связаны с точными исходными данными f 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacaaIWaaaaaaa@3599@  приведёнными ниже условиями Б, В, Г.

Условие Б. Существует постоянная C>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGdb GaaGOpaiaaicdaaaa@3613@  такая, что при любом δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3C90@  имеем

                               A δ A 0 Cδ, B δ B 0 Cδ, c δ c 0 2,m Cδ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucaWGbbWaaWbaaSqabeaacqaH0oaz aaGccqGHsislcaWGbbWaaWbaaSqabeaacaaIWaaaaOGae8xjIaLaey izImQaam4qaiabes7aKjaaiYcacaaMf8Uae8xjIaLaamOqamaaCaaa leqabaGaeqiTdqgaaOGaeyOeI0IaamOqamaaCaaaleqabaGaaGimaa aakiab=vIiqjabgsMiJkaadoeacqaH0oazcaaISaGaaGzbVlab=vIi qjaadogadaahaaWcbeqaaiabes7aKbaakiabgkHiTiaadogadaahaa WcbeqaaiaaicdaaaGccqWFLicudaWgaaWcbaGaaGOmaiaaiYcacaWG TbaabeaakiabgsMiJkaadoeacqaH0oazcaaISaaaaa@6362@

                              A δ A 0 Cδ, B δ B 0 Cδ, C δ C 0 H Cδ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicutuuDJXwAK1uy0HwmaeHbfv3ySLgz G0uy0Hgip5wzaGqbaiab+bq8bnaaCaaaleqabaGaeqiTdqgaaOGaey OeI0Iae4haXh0aaWbaaSqabeaacaaIWaaaaOGae8xjIaLaeyizImQa am4qaiabes7aKjaaiYcacaaMf8Uae8xjIaLae4hlHi0aaWbaaSqabe aacqaH0oazaaGccqGHsislcqGFSeIqdaahaaWcbeqaaiaaicdaaaGc cqWFLicucqGHKjYOcaWGdbGaeqiTdqMaaGilaiaaywW7cqWFLicucq GFce=qdaahaaWcbeqaaiabes7aKbaakiabgkHiTiab+jq8dnaaCaaa leqabaGaaGimaaaakiab=vIiqnaaBaaaleaacaWGibaabeaakiabgs MiJkaadoeacqaH0oazcaaIUaaaaa@6F73@         (5)

 

Условие В. Существует неубывающая функция N 1 (): + + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGob WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiabgwSixlaaiMcacaaI6aWe fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuda WgaaWcbaGaey4kaScabeaakiabgkziUkab=1risnaaBaaaleaacqGH RaWkaeqaaaaa@49DF@  такая, что для каждого l>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGSb GaaGOpaiaaicdaaaa@363C@  и любого δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3C90@  при z 2,m l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaqbda qaaiaadQhaaiaawMa7caGLkWoadaWgaaWcbaGaaGOmaiaaiYcacaWG TbaabeaakiabgsMiJkaadYgaaaa@3D2F@ , uD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaa cqWFdepraaa@418D@  выполняются неравенства

                                      10000| J i δ [z,u] J i 0 [z,u]| N 1 (l)δ,i= 0,k ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHsi slcaaIXaGaaGimaiaaicdacaaIWaGaaGimaiaaiYhatuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=Lq8knaaDaaaleaaca WGPbaabaGaeqiTdqgaaOGaaG4waiaadQhacaaISaGaamyDaiaai2fa cqGHsislcqWFjeVsdaqhaaWcbaGaamyAaaqaaiaaicdaaaGccaaIBb GaamOEaiaaiYcacaWG1bGaaGyxaiaaiYhacqGHKjYOcaWGobWaaSba aSqaaiaaigdaaeqaaOGaaGikaiaadYgacaaIPaGaeqiTdqMaaGilai aaywW7caWGPbGaaGypamaanaaabaGaaGimaiaaiYcacaWGRbaaaiaa i6caaaa@64A2@          (6)

Чтобы сформулировать следующее условие, воспользуемся введённым нами ранее (см., например, [28]) понятием равностепенной квазинильпотентности. Пусть B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWHcb aaaa@3494@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  банахово пространство, Ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHEo awaaa@354D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  некоторое множество, {G(ξ)[]:BB} ξΞ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaam4raiaaiIcacqaH+oaEcaaIPaGaaG4waiabgwSixlaai2facaaI 6aGaaCOqaiabgkziUkaahkeacaaI9bWaaSbaaSqaaiabe67a4jabgI Giolabf65aybqabaaaaa@471D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@  семейство зависящих от параметра ξΞ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH+o aEcqGHiiIZcqqHEoawaaa@3894@  квазинильпотентных ЛОО (квазинильпотентность ЛОО G(ξ)[]:BB MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGhb GaaGikaiabe67a4jaaiMcacaaIBbGaeyyXICTaaGyxaiaaiQdacaWH cbGaeyOKH4QaaCOqaaaa@401A@  означает, что {G(ξ)} k k 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaGcba qaaebbfv3ySLgzGueE0jxyaGabaiab=vIiqjaaiUhacaWGhbGaaGik aiabe67a4jaaiMcacaaI9bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa faleaacaWGRbaaaOGaeyOKH4QaaGimaaaa@457F@  при k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGRb GaeyOKH4QaeyOhIukaaa@3817@  ). Назовём семейство операторов {G(ξ)} ξΞ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaam4raiaaiIcacqaH+oaEcaaIPaGaaGyFamaaBaaaleaacqaH+oaE cqGHiiIZcqqHEoawaeqaaaaa@3EC0@  равностепенно квазинильпотентным, если sup ξΞ {G(ξ)} k k 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaqfqa qabSqaaiabe67a4jabgIGiolabf65aybqabOqaaiGacohacaGG1bGa aiiCaaaadaGcbaqaaebbfv3ySLgzGueE0jxyaGabaiab=vIiqjaaiU hacaWGhbGaaGikaiabe67a4jaaiMcacaaI9bWaaWbaaSqabeaacaWG RbaaaOGae8xjIafaleaacaWGRbaaaOGaeyOKH4QaaGimaaaa@4D73@  при k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGRb GaeyOKH4QaeyOhIukaaa@3817@ .

Условие Г. Семейство { A δ : L 2 m L 2 m } δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamyqamaaCaaaleqabaGaeqiTdqgaaOGaaGOoaiaadYeadaqhaaWc baGaaGOmaaqaaiaad2gaaaGccqGHsgIRcaWGmbWaa0baaSqaaiaaik daaeaacaWGTbaaaOGaaGyFamaaBaaaleaacqaH0oazcqGHiiIZcaaI BbGaaGimaiaaiYcacqaH0oazdaWgaaqaaiaaicdaaeqaaiaai2faae qaaaaa@49A5@  равностепенно квазинильпотентно.

При любом δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@  управляемое функциональное уравнение

                           z(t)= A δ [z](t)+ B δ [u](t)+ c δ (t),tΠ,z L 2 m ,u L 2 s , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b GaaGikaiaadshacaaIPaGaaGypaiaadgeadaahaaWcbeqaaiabes7a KbaakiaaiUfacaWG6bGaaGyxaiaaiIcacaWG0bGaaGykaiabgUcaRi aadkeadaahaaWcbeqaaiabes7aKbaakiaaiUfacaWG1bGaaGyxaiaa iIcacaWG0bGaaGykaiabgUcaRiaadogadaahaaWcbeqaaiabes7aKb aakiaaiIcacaWG0bGaaGykaiaaiYcacaaMf8UaamiDaiabgIGiolab fc6aqjaaiYcacaaMf8UaamOEaiabgIGiolaadYeadaqhaaWcbaGaaG Omaaqaaiaad2gaaaGccaaISaGaaGzbVlaadwhacqGHiiIZcaWGmbWa a0baaSqaaiaaikdaaeaacaWGZbaaaOGaaGilaaaa@6455@        (7)

 имеет для каждого u L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI4SaamitamaaDaaaleaacaaIYaaabaGaam4Caaaaaaa@38F9@  единственное в классе L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGTbaaaaaa@3675@  решение z(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b GaaGikaiaadshacaaIPaaaaa@3726@ , tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b GaeyicI4SaeuiOdaLaaGilaaaa@387A@  причём

                                            z(t)= S δ [ B δ [u]+ c δ ](t),tΠ,u L 2 s , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b GaaGikaiaadshacaaIPaGaaGypaiaadofadaahaaWcbeqaaiabes7a KbaakiaaiUfacaWGcbWaaWbaaSqabeaacqaH0oazaaGccaaIBbGaam yDaiaai2facqGHRaWkcaWGJbWaaWbaaSqabeaacqaH0oazaaGccaaI DbGaaGikaiaadshacaaIPaGaaGilaiaaywW7caWG0bGaeyicI4Saeu iOdaLaaGilaiaaywW7caWG1bGaeyicI4SaamitamaaDaaaleaacaaI YaaabaGaam4CaaaakiaaiYcaaaa@564D@            (8)

 где S δ : L 2 m L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGtb WaaWbaaSqabeaacqaH0oazaaGccaaI6aGaamitamaaDaaaleaacaaI YaaabaGaamyBaaaakiabgkziUkaadYeadaqhaaWcbaGaaGOmaaqaai aad2gaaaaaaa@3E90@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  ЛОО MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  сумма ряда Неймана S δ [y] i=0 ( A δ ) i [y] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGtb WaaWbaaSqabeaacqaH0oazaaGccaaIBbGaamyEaiaai2facqGHHjIU daaeWaqabSqaaiaadMgacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHri s5aOGaaGikaiaadgeadaahaaWcbeqaaiabes7aKbaakiaaiMcadaah aaWcbeqaaiaadMgaaaGccaaIBbGaamyEaiaai2faaaa@48F3@ , y L 2 m . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG5b GaeyicI4SaamitamaaDaaaleaacaaIYaaabaGaamyBaaaakiaai6ca aaa@39B9@  Отвечающее управлению u L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI4SaamitamaaDaaaleaacaaIYaaabaGaam4Caaaaaaa@38F9@  и задаваемое формулой (8) решение z() MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b GaaGikaiabgwSixlaaiMcaaaa@3877@  уравнения (7) будем обозначать z u δ () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b Waa0baaSqaaiaadwhaaeaacqaH0oazaaGccaaIOaGaeyyXICTaaGyk aaaa@3B4D@ , δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@ . При любом δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@  имеем набор ограничений

                                   G δ [u]= C δ , J 1 δ [u]0,, J k δ [u]0,u L 2 s , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=zq8hnaaCaaa leqabaGaeqiTdqgaaOGaaG4waiaadwhacaaIDbGaaGypaiab=jq8dn aaCaaaleqabaGaeqiTdqgaaOGaaGilaiaaywW7caWGkbWaa0baaSqa aiaaigdaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2facqGHKjYOca aIWaGaaGilaiaaywW7cqWIMaYscaaISaGaaGzbVlaadQeadaqhaaWc baGaam4Aaaqaaiabes7aKbaakiaaiUfacaWG1bGaaGyxaiabgsMiJk aaicdacaaISaGaaGzbVlaadwhacqGHiiIZcaWGmbWaa0baaSqaaiaa ikdaaeaacaWGZbaaaOGaaGilaaaa@69A2@         (9)

 где G δ [u] A δ [ z u δ ]+ B δ [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=zq8hnaaCaaa leqabaGaeqiTdqgaaOGaaG4waiaadwhacaaIDbGaeyyyIORae8haXh 0aaWbaaSqabeaacqaH0oazaaGccaaIBbGaamOEamaaDaaaleaacaWG 1baabaGaeqiTdqgaaOGaaGyxaiabgUcaRiab=XsicnaaCaaaleqaba GaeqiTdqgaaOGaaG4waiaadwhacaaIDbaaaa@554C@ , J i δ [u] J i δ [ z u δ ,u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaadMgaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2fa cqGHHjIUtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabai ab=Lq8knaaDaaaleaacaWGPbaabaGaeqiTdqgaaOGaaG4waiaadQha daqhaaWcbaGaamyDaaqaaiabes7aKbaakiaaiYcacaWG1bGaaGyxaa aa@515E@  ( i= 1,k ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGymaiaaiYcacaWGRbaaaaaa@37F0@  ), и задачу оптимального управления

                                                  J 0 δ [u]min,(9),uD,(O C δ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2fa cqGHsgIRciGGTbGaaiyAaiaac6gacaaISaGaaGzbVlaaiIcacaaI5a GaaGykaiaaiYcacaaMf8UaamyDaiabgIGioprr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbaceaGae83aXtKaaGilaiaaiIcacaWGpb Gaam4qamaaCaaaleqabaGaeqiTdqgaaOGaaGykaaaa@58BA@

в которой J 0 δ [u] J 0 δ [ z u δ ,u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2fa cqGHHjIUtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabai ab=Lq8knaaDaaaleaacaaIWaaabaGaeqiTdqgaaOGaaG4waiaadQha daqhaaWcbaGaamyDaaqaaiabes7aKbaakiaaiYcacaWG1bGaaGyxaa aa@50F6@ , u L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI4SaamitamaaDaaaleaacaaIYaaabaGaam4Caaaaaaa@38F9@ . Задачу ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ) называем точной задачей, а задачи ( O C δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaeqiTdqgaaaaa@3737@  ), δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3C90@ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  приближёнными задачами оптимального управления. Обозначим множество всех решений задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ), которое может быть и пустым, через U 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGvb WaaWbaaSqabeaacaaIWaaaaaaa@358A@ , а для его элементов будем использовать обозначение u 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacaaIWaaaaaaa@35AA@ .

1.3. МПР и МПР-образующий оператор

Для компактности записи введём обозначение J δ [u]{ J 1 δ [u],, J k δ [u]} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb WaaWbaaSqabeaacqaH0oazaaGccaaIBbGaamyDaiaai2facqGHHjIU caaI7bGaamOsamaaDaaaleaacaaIXaaabaGaeqiTdqgaaOGaaG4wai aadwhacaaIDbGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadQea daqhaaWcbaGaam4Aaaqaaiabes7aKbaakiaaiUfacaWG1bGaaGyxai aai2haaaa@4F44@ . Положим

            D δ,ϵ {uD: G δ [u] C δ H ϵ, J i δ [u]ϵ(i= 1,k ¯ )},δ[0, δ 0 ],ϵ0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8enaaCaaa leqabaGaeqiTdqMaaGilaGabciab+v=aYdaakiabggMi6kaaiUhaca WG1bGaeyicI4Sae83aXtKaaGOoaebbfv3ySLgzGueE0jxyaGqbaiab 9vIiqjab=zq8hnaaCaaaleqabaGaeqiTdqgaaOGaaG4waiaadwhaca aIDbGaeyOeI0Iae8NaXp0aaWbaaSqabeaacqaH0oazaaGccqqFLicu daWgaaWcbaGaamisaaqabaGccqGHKjYOcqGF1pG8caaISaGaamOsam aaDaaaleaacaWGPbaabaGaeqiTdqgaaOGaaG4waiaadwhacaaIDbGa eyizImQae4x9diVaaGjbVlaaiIcacaWGPbGaaGypamaanaaabaGaaG ymaiaaiYcacaWGRbaaaiaaiMcacaaI9bGaaGilaiaaywW7cqaH0oaz cqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGimaa qabaGccaaIDbGaaGilaiaaywW7cqGF1pG8cqGHLjYScaaIWaGaaGil aaaa@8947@

и пусть D 0 D 0,0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8enaaCaaa leqabaGaaGimaaaakiabggMi6kab=nq8enaaCaaaleqabaGaaGimai aaiYcacaaIWaaaaaaa@45DD@ . Определим обобщённую нижнюю грань β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo Gyaaa@356A@  задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ) как предел β β +0 lim ϵ+0 β ϵ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GycqGHHjIUcqaHYoGydaWgaaWcbaGaey4kaSIaaGimaaqabaGccqGH HjIUdaqfqaqabSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbaceiGae8x9diVaeyOKH4Qaey4kaSIaaGimaaqabOqaaiGacYga caGGPbGaaiyBaaaacqaHYoGydaWgaaWcbaGae8x9dipabeaaaaa@5341@ , где β ϵ inf u D 0,ϵ J 0 0 [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GydaWgaaWcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iqGacqWF1pG8aeqaaOGaeyyyIO7aaubeaeqaleaacaWG1bGaeyicI4 mceaGae43aXt0aaWbaaeqabaGaaGimaiaaiYcacqWF1pG8aaaabeGc baGaciyAaiaac6gacaGGMbaaaiaadQeadaqhaaWcbaGaaGimaaqaai aaicdaaaGccaaIBbGaamyDaiaai2faaaa@53F8@ , если D 0,ϵ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8enaaCaaa leqabaGaaGimaiaaiYcaiqGacqGF1pG8aaGccqGHGjsUcqGHfiIXaa a@4672@ , и β ϵ + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GydaWgaaWcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iqGacqWF1pG8aeqaaOGaeyyyIORaey4kaSIaeyOhIukaaa@45B6@ , если D 0,ϵ = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8enaaCaaa leqabaGaaGimaiaaiYcaiqGacqGF1pG8aaGccaaI9aGaeyybIymaaa@4572@ . Вообще говоря, имеет место очевидное неравенство β β 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GycqGHKjYOcqaHYoGydaWgaaWcbaGaaGimaaqabaaaaa@39A6@ , где β 0 inf u D 0 J 0 0 [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GydaWgaaWcbaGaaGimaaqabaGccqGHHjIUdaqfqaqabSqaaiaadwha cqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabai ab=nq8enaaCaaabeqaaiaaicdaaaaabeGcbaGaciyAaiaac6gacaGG MbaaaiaadQeadaqhaaWcbaGaaGimaaqaaiaaicdaaaGccaaIBbGaam yDaiaai2faaaa@4F11@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  классическая нижняя грань задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ). Однако в данном случае β= β 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GycaaI9aGaeqOSdi2aaSbaaSqaaiaaicdaaeqaaaaa@38B8@  (см. ниже замечание ).

Напомним, что последовательность u k D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacaWGRbaaaOGaeyicI48efv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiqaacqWFdepraaa@42B4@ , k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGRb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E8@ , называется МПР задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ), если J 0 0 [ u k ]β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacaaIWaaaaOGaaG4waiaadwhadaahaaWc beqaaiaadUgaaaGccaaIDbGaeyOKH4QaeqOSdiMaaGjcVlaayIW7aa a@40E0@  при k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGRb GaeyOKH4QaeyOhIukaaa@3817@ , причём u k D 0, ϵ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacaWGRbaaaOGaeyicI48efv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiqaacqWFdeprdaahaaWcbeqaaiaaicdaca aISaaceiGae4x9di=aaWbaaeqabaGaam4Aaaaaaaaaaa@47DF@  для некоторой сходящейся к нулю последовательности положительных чисел ϵ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiWdaiab=v=aYpaaCaaa leqabaGaam4Aaaaaaaa@40E0@ , k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGRb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E8@ . Введём ещё одно основное понятие работы MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  понятие МПР-образующего оператора (алгоритма) [32] в задаче ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ).

 Определение 1. Пусть δ k (0, δ 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azdaahaaWcbeqaaiaadUgaaaGccqGHiiIZcaaIOaGaaGimaiaaiYca cqaH0oazdaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@3D83@ , k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGRb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E8@ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  сходящаяся к нулю последовательность положительных чисел. Зависящий от δ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azdaahaaWcbeqaaiaadUgaaaaaaa@368B@ , k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGRb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E8@ , оператор R(, δ k ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGsb GaaGikaiabgwSixlaaiYcacqaH0oazdaahaaWcbeqaaiaadUgaaaGc caaIPaaaaa@3BD1@ , ставящий в соответствие каждому набору исходных данных f δ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGRbaaaaaaaaa@3796@ , удовлетворяющих оценкам (5), (6) при δ= δ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcaaI9aGaeqiTdq2aaWbaaSqabeaacaWGRbaaaaaa@38F7@ , элемент R( f δ k , δ k ) u δ k D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGsb GaaGikaiaabAgadaahaaWcbeqaaiabes7aKnaaCaaabeqaaiaadUga aaaaaOGaaGilaiabes7aKnaaCaaaleqabaGaam4AaaaakiaaiMcacq GHHjIUcaWG1bWaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGRbaa aaaakiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb aceaGae83aXteaaa@4FD9@ , называется МПР-образующим в задаче ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ), если последовательность u δ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGRbaaaaaaaaa@37A7@ , k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGRb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E8@ , есть МПР в этой задаче.

2. ЭКВИВАЛЕНТНАЯ ЗАДАЧА ВЫПУКЛОГО ПРОГРАММИРОВАНИЯ

2.1. Задача выпуклого программирования

Задача оптимального управления ( O C δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaeqiTdqgaaaaa@3737@  ) при любом δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@  имеет форму задачи выпуклого программирования в пространстве L 2 s . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGZbaaaOGaaGOlaaaa@373D@  Перепишем её в несколько ином виде, позволяющем напрямую воспользоваться результатами работ [7, 32], посвящённых регуляризации КУО в задачах выпуклого программирования и выпуклого оптимального управления в гильбертовом пространстве. Для этого выделим в операторе G δ [.] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=zq8hnaaCaaa leqabaGaeqiTdqgaaOGaaG4waiaai6cacaaIDbaaaa@4375@  линейную часть MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  ЛОО G δ []: L 2 s H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWHhb WaaWbaaSqabeaacqaH0oazaaGccaaIBbGaeyyXICTaaGyxaiaaiQda caWGmbWaa0baaSqaaiaaikdaaeaacaWGZbaaaOGaeyOKH4Qaamisaa aa@40C5@ :

G δ [u] G δ [u]+ A δ S δ [ c δ ], G δ [u] A δ [ S δ B δ [u]]+ B δ [u],u L 2 s ,δ[0, δ 0 ]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=zq8hnaaCaaa leqabaGaeqiTdqgaaOGaaG4waiaadwhacaaIDbGaeyyyIORaaC4ram aaCaaaleqabaGaeqiTdqgaaOGaaG4waiaadwhacaaIDbGaey4kaSIa e8haXh0aaWbaaSqabeaacqaH0oazaaGccaWGtbWaaWbaaSqabeaacq aH0oazaaGccaaIBbGaam4yamaaCaaaleqabaGaeqiTdqgaaOGaaGyx aiaaiYcacaaMf8UaaC4ramaaCaaaleqabaGaeqiTdqgaaOGaaG4wai aadwhacaaIDbGaeyyyIORae8haXh0aaWbaaSqabeaacqaH0oazaaGc caaIBbGaam4uamaaCaaaleqabaGaeqiTdqgaaOGaamOqamaaCaaale qabaGaeqiTdqgaaOGaaG4waiaadwhacaaIDbGaaGyxaiabgUcaRiab =XsicnaaCaaaleqabaGaeqiTdqgaaOGaaG4waiaadwhacaaIDbGaaG ilaiaaywW7caWG1bGaeyicI4SaamitamaaDaaaleaacaaIYaaabaGa am4CaaaakiaaiYcacaaMf8UaeqiTdqMaeyicI4SaaG4waiaaicdaca aISaGaeqiTdq2aaSbaaSqaaiaaicdaaeqaaOGaaGyxaiaai6caaaa@87B2@                                                                                                  (10)

 Положим e δ C δ A δ S δ [ c δ ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGLb WaaWbaaSqabeaacqaH0oazaaGccqGHHjIUtuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabaiab=jq8dnaaCaaaleqabaGaeqiTdq gaaOGaeyOeI0Iae8haXh0aaWbaaSqabeaacqaH0oazaaGccaWGtbWa aWbaaSqabeaacqaH0oazaaGccaaIBbGaam4yamaaCaaaleqabaGaeq iTdqgaaOGaaGyxaaaa@513C@ , δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@ . Очевидно, что при каждом δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@  задача оптимального управления ( O C δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaeqiTdqgaaaaa@3737@  ) эквивалентна задаче выпуклого программирования в L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGZbaaaaaa@367B@  (совпадают множества решений и значения этих задач):

                       J 0 δ [u]min, G δ [u]= e δ , J i δ [u]0,i= 1,k ¯ ,uD.( P δ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2fa cqGHsgIRciGGTbGaaiyAaiaac6gacaaISaGaaGzbVlaahEeadaahaa Wcbeqaaiabes7aKbaakiaaiUfacaWG1bGaaGyxaiaai2dacaWGLbWa aWbaaSqabeaacqaH0oazaaGccaaISaGaaGzbVlaadQeadaqhaaWcba GaamyAaaqaaiabes7aKbaakiaaiUfacaWG1bGaaGyxaiabgsMiJkaa icdacaaISaGaaGzbVlaadMgacaaI9aWaa0aaaeaacaaIXaGaaGilai aadUgaaaGaaGilaiaaywW7caWG1bGaeyicI48efv3ySLgznfgDOfda ryqr1ngBPrginfgDObYtUvgaiqaacqWFdeprcaaIUaGaaGikaiaadc fadaahaaWcbeqaaiabes7aKbaakiaaiMcaaaa@7049@

Следствием условия А является равномерная по δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@  липшицевость функционалов J i δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaadMgaaeaacqaH0oazaaaaaa@3758@  ( i= 0,k ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGimaiaaiYcacaWGRbaaaaaa@37EF@  ) на любом ограниченном множестве пространства L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGZbaaaaaa@367B@ : существует неубывающая функция N 2 (): + + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWHob WaaSbaaSqaaiaaikdaaeqaaOGaaGikaiabgwSixlaaiMcacaaI6aWe fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuda WgaaWcbaGaey4kaScabeaakiabgkziUkab=1risnaaBaaaleaacqGH RaWkaeqaaaaa@49E4@  такая, что при каждом δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@  для любого l>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGSb GaaGOpaiaaicdaaaa@363C@  

     | J i δ [ u 1 ] J i δ [ u 2 ]| N 2 (l) u 1 u 2 2,s , u 1 , u 2 L 2 s , u 1 2,s , u 2 2,s l,i= 0,k ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI8b GaamOsamaaDaaaleaacaWGPbaabaGaeqiTdqgaaOGaaG4waiaadwha daWgaaWcbaGaaGymaaqabaGccaaIDbGaeyOeI0IaamOsamaaDaaale aacaWGPbaabaGaeqiTdqgaaOGaaG4waiaadwhadaWgaaWcbaGaaGOm aaqabaGccaaIDbGaaGiFaiabgsMiJkaah6eadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaamiBaiaaiMcarqqr1ngBPrgifHhDYfgaiqaacqWF LicucaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyDamaaBa aaleaacaaIYaaabeaakiab=vIiqnaaBaaaleaacaaIYaGaaGilaiaa dohaaeqaaOGaaGilaiaaywW7caWG1bWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaadwhadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcaWGmbWa a0baaSqaaiaaikdaaeaacaWGZbaaaOGaaGilaiaaywW7cqWFLicuca WG1bWaaSbaaSqaaiaaigdaaeqaaOGae8xjIa1aaSbaaSqaaiaaikda caaISaGaam4CaaqabaGccaaISaGae8xjIaLaamyDamaaBaaaleaaca aIYaaabeaakiab=vIiqnaaBaaaleaacaaIYaGaaGilaiaadohaaeqa aOGaeyizImQaamiBaiaaiYcacaaMf8UaamyAaiaai2dadaqdaaqaai aaicdacaaISaGaam4AaaaacaaIUaaaaa@7EC8@

Условия Б и Г дают такое свойство семейства операторов { A δ } 0δ δ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamyqamaaCaaaleqabaGaeqiTdqgaaOGaaGyFamaaBaaaleaacaaI WaGaeyizImQaeqiTdqMaeyizImQaeqiTdq2aaSbaaeaacaaIWaaabe aaaeqaaaaa@40EC@  (см. [9, лемма 1]).

 Лемма 1. Существует число K>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=Pq8ljaai6da caaIWaaaaa@409F@  такое, что S δ S 0 K A δ A 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucaWGtbWaaWbaaSqabeaacqaH0oaz aaGccqGHsislcaWGtbWaaWbaaSqabeaacaaIWaaaaOGae8xjIaLaey izIm6efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqGF ke=scqWFLicucaWGbbWaaWbaaSqabeaacqaH0oazaaGccqGHsislca WGbbWaaWbaaSqabeaacaaIWaaaaOGae8xjIafaaa@548D@ , δ[0, δ 0 ]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbGaaGOlaaaa@3D7B@  

Из условий Б, В и Г простыми выкладками, используя лемму , получаем следующую связь входных данных задачи ( P 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacaaIWaaaaaaa@3585@  ) с входными данными задач ( P δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacqaH0oazaaaaaa@3670@  ) при δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3C90@ .

 Лемма 2. Существует постоянная Γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHto Wraaa@3531@ , зависящая лишь от операторов A 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGbb WaaWbaaSqabeaacaaIWaaaaaaa@3576@ , B 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGcb WaaWbaaSqabeaacaaIWaaaaaaa@3577@ , функционалов J i 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=Lq8knaaDaaa leaacaWGPbaabaGaaGimaaaaaaa@40F0@   (i= 0,k ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamyAaiaai2dadaqdaaqaaiaaicdacaaISaGaam4AaaaacaaIPaaa aa@3954@ , функций c 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGJb WaaWbaaSqabeaacaaIWaaaaaaa@3598@ , N 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGob WaaSbaaSqaaiaaigdaaeqaaaaa@3583@ , чисел C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGdb aaaa@3491@ , K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=Pq8lbaa@3F1D@ , δ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azdaWgaaWcbaGaaGimaaqabaaaaa@3654@  и множества D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ebaa@3F0F@ , такая, что

G δ G 0 Γδ, e δ e 0 H Γδ,| J i δ [u] J i 0 [u]|Γδ,uD,i= 0,k ¯ ,δ(0, δ 0 ]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucaWHhbWaaWbaaSqabeaacqaH0oaz aaGccqGHsislcaWHhbWaaWbaaSqabeaacaaIWaaaaOGae8xjIaLaey izImQaeu4KdCKaeqiTdqMaaGilaiaaywW7cqWFLicucaWGLbWaaWba aSqabeaacqaH0oazaaGccqGHsislcaWGLbWaaWbaaSqabeaacaaIWa aaaOGae8xjIa1aaSbaaSqaaiaadIeaaeqaaOGaeyizImQaeu4KdCKa eqiTdqMaaGilaiaaywW7caaI8bGaamOsamaaDaaaleaacaWGPbaaba GaeqiTdqgaaOGaaG4waiaadwhacaaIDbGaeyOeI0IaamOsamaaDaaa leaacaWGPbaabaGaaGimaaaakiaaiUfacaWG1bGaaGyxaiaaiYhacq GHKjYOcqqHtoWrcqaH0oazcaaISaGaaGzbVlaadwhacqGHiiIZtuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab+nq8ejaaiY cacaaMf8UaamyAaiaai2dadaqdaaqaaiaaicdacaaISaGaam4Aaaaa caaISaGaaGzbVlabes7aKjabgIGiolaaiIcacaaIWaGaaGilaiabes 7aKnaaBaaaleaacaaIWaaabeaakiaai2facaaIUaaaaa@8C8E@           (11) 

2.2. МПР и МПР-образующий оператор в задаче выпуклого программирования

Имеем D δ,ϵ ={uD: G δ [u] e δ H ϵ, J i δ [u]ϵ(i= 1,k ¯ )} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8enaaCaaa leqabaGaeqiTdqMaaGilaGabciab+v=aYdaakiaai2dacaaI7bGaam yDaiabgIGiolab=nq8ejaaiQdacaaMe8EeeuuDJXwAKbsr4rNCHbac faGae0xjIaLaaC4ramaaCaaaleqabaGaeqiTdqgaaOGaaG4waiaadw hacaaIDbGaeyOeI0IaamyzamaaCaaaleqabaGaeqiTdqgaaOGae0xj Ia1aaSbaaSqaaiaadIeaaeqaaOGaeyizImQae4x9diVaaGilaiaadQ eadaqhaaWcbaGaamyAaaqaaiabes7aKbaakiaaiUfacaWG1bGaaGyx aiabgsMiJkab+v=aYlaaysW7caaIOaGaamyAaiaai2dadaqdaaqaai aaigdacaaISaGaam4AaaaacaaIPaGaaGyFaaaa@74E8@ , δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@ , ϵ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiWdaiab=v=aYlabgwMi Zkaaicdaaaa@4243@ . Так как обобщённая нижняя грань задачи ( P 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacaaIWaaaaaaa@3585@  ) определяется фактически той же самой формулой, что и обобщённая нижняя грань задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ), и эти грани совпадают, то мы сохраним за ней то же обозначение β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo Gyaaa@356A@ . Имеем β β +0 lim ϵ+0 β ϵ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GycqGHHjIUcqaHYoGydaWgaaWcbaGaey4kaSIaaGimaaqabaGccqGH HjIUdaqfqaqabSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbaceiGae8x9diVaeyOKH4Qaey4kaSIaaGimaaqabOqaaiGacYga caGGPbGaaiyBaaaacqaHYoGydaWgaaWcbaGae8x9dipabeaaaaa@5341@ , β ϵ inf u D 0,ϵ J 0 0 [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GydaWgaaWcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iqGacqWF1pG8aeqaaOGaeyyyIO7aaubeaeqaleaacaWG1bGaeyicI4 mceaGae43aXt0aaWbaaeqabaGaaGimaiaaiYcacqWF1pG8aaaabeGc baGaciyAaiaac6gacaGGMbaaaiaadQeadaqhaaWcbaGaaGimaaqaai aaicdaaaGccaaIBbGaamyDaiaai2faaaa@53F8@ , если D 0,ϵ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8enaaCaaa leqabaGaaGimaiaaiYcaiqGacqGF1pG8aaGccqGHGjsUcqGHfiIXaa a@4672@ ; β ϵ + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GydaWgaaWcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iqGacqWF1pG8aeqaaOGaeyyyIORaey4kaSIaeyOhIukaaa@45B6@ , если D 0,ϵ = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8enaaCaaa leqabaGaaGimaiaaiYcaiqGacqGF1pG8aaGccaaI9aGaeyybIymaaa@4572@ . Как уже отмечалось, имеет место очевидное неравенство β β 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GycqGHKjYOcqaHYoGydaWgaaWcbaGaaGimaaqabaaaaa@39A6@ , где β 0 inf u D 0 J 0 0 [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GydaWgaaWcbaGaaGimaaqabaGccqGHHjIUdaqfqaqabSqaaiaadwha cqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabai ab=nq8enaaCaaabeqaaiaaicdaaaaabeGcbaGaciyAaiaac6gacaGG MbaaaiaadQeadaqhaaWcbaGaaGimaaqaaiaaicdaaaGccaaIBbGaam yDaiaai2faaaa@4F11@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  классическая нижняя грань задачи ( P 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacaaIWaaaaaaa@3585@  ). Однако специфика задачи ( P 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacaaIWaaaaaaa@3585@  ) такова, что β= β 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GycaaI9aGaeqOSdi2aaSbaaSqaaiaaicdaaeqaaaaa@38B8@  (см. ниже замечание ).

Определение 2. Последовательность { u j } j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamyDamaaCaaaleqabaGaamOAaaaakiaai2hadaqhaaWcbaGaamOA aiaai2dacaaIXaaabaGaeyOhIukaaaaa@3C04@  элементов множества D, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ejaaiYca aaa@3FC5@  для которой существует такая стремящаяся к нулю последовательность положительных чисел { ϵ j } j=1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Wefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqGacqWF1pG8 daahaaWcbeqaaiaadQgaaaGccaaI9bWaa0baaSqaaiaadQgacaaI9a GaaGymaaqaaiabg6HiLcaakiaaiYcaaaa@47C4@  что u j D 0, ϵ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacaWGQbaaaOGaeyicI48efv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiqaacqWFdeprdaahaaWcbeqaaiaaicdaca aISaaceiGae4x9di=aaWbaaeqabaGaamOAaaaaaaaaaa@47DD@  ( j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E7@  ) и J 0 0 [ u j ]β= inf u D 0 J 0 0 [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacaaIWaaaaOGaaG4waiaadwhadaahaaWc beqaaiaadQgaaaGccaaIDbGaeyOKH4QaeqOSdiMaaGypamaavababe WcbaGaamyDaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhA G8KBLbaceaGae83aXt0aaWbaaeqabaGaaGimaaaaaeqakeaaciGGPb GaaiOBaiaacAgaaaGaamOsamaaDaaaleaacaaIWaaabaGaaGimaaaa kiaaiUfacaWG1bGaaGyxaaaa@5572@  при j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyOKH4QaeyOhIukaaa@3816@ , называется минимизирующим приближённым решением задачи ( P 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacaaIWaaaaaaa@3585@  ).

 Замечание 1. Так как ограниченное выпуклое замкнутое множество D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ebaa@3F0F@  в гильбертовом пространстве слабо компактно, а непрерывный выпуклый функционал на таком множестве слабо полунепрерывен снизу, то всякая слабая предельная точка любого МПР в задаче ( P 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacaaIWaaaaaaa@3585@  ) является её решением. Поэтому β= β 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GycaaI9aGaeqOSdi2aaSbaaSqaaiaaicdaaeqaaaaa@38B8@  для задачи ( P 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacaaIWaaaaaaa@3585@  ), а следовательно, и для эквивалетной задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ). В случае сильной выпуклости непрерывного функционала J 0 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacaaIWaaaaaaa@3639@  каждое МПР как в задаче ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ), так и в задаче ( P 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacaaIWaaaaaaa@3585@  ) сильно сходится к единственному в этом случае решению задачи (см., например, [6, гл. 8, § MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGNc aaaa@34F3@  2, теорема 10]).

Положим J δ [u]{ J 1 δ [u],, J k δ [u]} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb WaaWbaaSqabeaacqaH0oazaaGccaaIBbGaamyDaiaai2facqGHHjIU caaI7bGaamOsamaaDaaaleaacaaIXaaabaGaeqiTdqgaaOGaaG4wai aadwhacaaIDbGaaGilaiablAciljaaiYcacaWGkbWaa0baaSqaaiaa dUgaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2facaaI9baaaa@4C2A@ . Введём для задачи ( P 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacaaIWaaaaaaa@3585@  ) согласованное с понятием МПР понятие регуляризирующего оператора [32]. Набором исходных данных задачи ( P δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacqaH0oazaaaaaa@3670@ ) является набор f^δ{J0δ,Jδ,Gδ,eδ}.

Определение 3. Зависящий от δ(0, δ 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIPaaaaa@3C5C@  оператор R(,,,,δ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGsb GaaGikaiabgwSixlaaiYcacqGHflY1caaISaGaeyyXICTaaGilaiab gwSixlaaiYcacqaH0oazcaaIPaaaaa@43AA@ , ставящий в соответствие каждому набору исходных данных { J 0 δ , J δ , G δ , e δ } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamOsamaaDaaaleaacaaIWaaabaGaeqiTdqgaaOGaaGilaiaadQea daahaaWcbeqaaiabes7aKbaakiaaiYcacaWHhbWaaWbaaSqabeaacq aH0oazaaGccaaISaGaamyzamaaCaaaleqabaGaeqiTdqgaaOGaaGyF aaaa@4379@ , удовлетворяющих условиям (11), элемент R( J 0 δ , J δ , G δ , e δ ,δ)= u δ D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGsb GaaGikaiaadQeadaqhaaWcbaGaaGimaaqaaiabes7aKbaakiaaiYca caWGkbWaaWbaaSqabeaacqaH0oazaaGccaaISaGaaC4ramaaCaaale qabaGaeqiTdqgaaOGaaGilaiaadwgadaahaaWcbeqaaiabes7aKbaa kiaaiYcacqaH0oazcaaIPaGaaGypaiaadwhadaahaaWcbeqaaiabes 7aKbaakiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbaceaGae83aXteaaa@566B@ , называется регуляризирующим в задаче ( P 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacaaIWaaaaaaa@3585@  ), если u δ D 0,ϵ(δ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazaaGccqGHiiIZtuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabaiab=nq8enaaCaaaleqabaGaaGimai aaiYcaiqGacqGF1pG8caaIOaGaeqiTdqMaaGykaaaaaaa@4A8C@  при δ(0, δ 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIPaaaaa@3C5C@ , J 0 0 [ u δ ]β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacaaIWaaaaOGaaG4waiaadwhadaahaaWc beqaaiabes7aKbaakiaai2facqGHsgIRcqaHYoGyaaa@3E73@ , ϵ(δ)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiWdaiab=v=aYlaaiIca cqaH0oazcaaIPaGaeyOKH4QaaGimaaaa@4574@  при δ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHsgIRcaaIWaaaaa@3815@ .

Введём понятие МПР-образующего оператора в задаче ( P 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacaaIWaaaaaaa@3585@  ) как задаче выпуклого программирования (согласованное с одноименным понятием в задаче ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  )).

Определение 4. Пусть δ k (0, δ 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azdaahaaWcbeqaaiaadUgaaaGccqGHiiIZcaaIOaGaaGimaiaaiYca cqaH0oazdaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@3D83@ , k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGRb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E8@ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  сходящаяся к нулю последовательность. Зависящий от δ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azdaahaaWcbeqaaiaadUgaaaaaaa@368B@ , k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGRb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E8@ , оператор R(,,,, δ k ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGsb GaaGikaiabgwSixlaaiYcacqGHflY1caaISaGaeyyXICTaaGilaiab gwSixlaaiYcacqaH0oazdaahaaWcbeqaaiaadUgaaaGccaaIPaaaaa@44D1@ , ставящий в соответствие каждому набору исходных данных { J 0 δ k , J δ k , G δ k , e δ k } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamOsamaaDaaaleaacaaIWaaabaGaeqiTdq2aaWbaaeqabaGaam4A aaaaaaGccaaISaGaamOsamaaCaaaleqabaGaeqiTdq2aaWbaaeqaba Gaam4AaaaaaaGccaaISaGaaC4ramaaCaaaleqabaGaeqiTdq2aaWba aeqabaGaam4AaaaaaaGccaaISaGaamyzamaaCaaaleqabaGaeqiTdq 2aaWbaaeqabaGaam4AaaaaaaGccaaI9baaaa@47C1@ , удовлетворяющих условиям (11) при δ= δ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcaaI9aGaeqiTdq2aaWbaaSqabeaacaWGRbaaaaaa@38F7@ , элемент R( J 0 δ k , J δ k , G δ k , e δ k , δ k )= u δ k D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGsb GaaGikaiaadQeadaqhaaWcbaGaaGimaaqaaiabes7aKnaaCaaabeqa aiaadUgaaaaaaOGaaGilaiaadQeadaahaaWcbeqaaiabes7aKnaaCa aabeqaaiaadUgaaaaaaOGaaGilaiaahEeadaahaaWcbeqaaiabes7a KnaaCaaabeqaaiaadUgaaaaaaOGaaGilaiaadwgadaahaaWcbeqaai abes7aKnaaCaaabeqaaiaadUgaaaaaaOGaaGilaiabes7aKnaaCaaa leqabaGaam4AaaaakiaaiMcacaaI9aGaamyDamaaCaaaleqabaGaeq iTdq2aaWbaaeqabaGaam4AaaaaaaGccqGHiiIZtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=nq8ebaa@5CEC@ , называется МПР-образующим в задаче ( P 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacaaIWaaaaaaa@3585@  ), если последовательность u δ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGRbaaaaaaaaa@37A7@ , k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGRb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E8@ , есть МПР в этой задаче.

Наша задача ( P δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacqaH0oazaaaaaa@3670@  ) является частным случаем задачи ( P δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacqaH0oazaaaaaa@3670@  ) из [32]: набор исходных данных { J 0 δ , J δ , G δ , e δ } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamOsamaaDaaaleaacaaIWaaabaGaeqiTdqgaaOGaaGilaiaadQea daahaaWcbeqaaiabes7aKbaakiaaiYcacaWHhbWaaWbaaSqabeaacq aH0oazaaGccaaISaGaamyzamaaCaaaleqabaGaeqiTdqgaaOGaaGyF aaaa@4379@  данной работы соответствует набору исходных данных { f δ , g δ , A δ , h δ } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamOzamaaCaaaleqabaGaeqiTdqgaaOGaaGilaiaadEgadaahaaWc beqaaiabes7aKbaakiaaiYcacaWGbbWaaWbaaSqabeaacqaH0oazaa GccaaISaGaamiAamaaCaaaleqabaGaeqiTdqgaaOGaaGyFaaaa@42F1@  в [32], т.е. к нашей задаче ( P δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacqaH0oazaaaaaa@3670@  ) могут быть применены следующие результаты работы [32]: 1) теорема сходимости метода двойственной регуляризации с дополнительным параметром регуляризации в функционале цели [32, теорема 2]; 2) регуляризованный принцип Лагранжа для задачи выпуклого программирования с выпуклым (вообще говоря, не сильно выпуклым) целевым функционалом [32, теорема 3]. Естественно, мы можем переформулировать указанные теоремы [32] в терминах нашей задачи ( P δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacqaH0oazaaaaaa@3670@  ) и эквивалентной ей задачи ( O C δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaeqiTdqgaaaaa@3737@  ); так как исходные данные этих наших задач связаны между собой простыми соотношениями (10) и e δ C δ A δ S δ [ c δ ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGLb WaaWbaaSqabeaacqaH0oazaaGccqGHHjIUtuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabaiab=jq8dnaaCaaaleqabaGaeqiTdq gaaOGaeyOeI0Iae8haXh0aaWbaaSqabeaacqaH0oazaaGccaWGtbWa aWbaaSqabeaacqaH0oazaaGccaaIBbGaam4yamaaCaaaleqabaGaeq iTdqgaaOGaaGyxaaaa@513C@ , δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@ , сделаем это сразу в терминах задачи оптимального управления ( O C δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaeqiTdqgaaaaa@3737@  ).

3. РЕГУЛЯРИЗАЦИЯ КЛАССИЧЕСКИХ УСЛОВИЙ ОПТИМАЛЬНОСТИ В ЗАДАЧАХ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ РАСПРЕДЕЛЁННЫМИ СИСТЕМАМИ

Чтобы переформулировать указанные теоремы [32] в терминах нашей задачи ( O C δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaeqiTdqgaaaaa@3737@  ), введём необходимые конструкции. Прежде всего запишем регуляризованные задачи ( O C δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaeqiTdqgaaaaa@3737@  )

           J 0 δ [u]+εu 2,s 2 min, G δ [u]= C δ , J i δ [u]0,i= 1,k ¯ ,uD,(O C ε δ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2fa cqGHRaWkcqaH1oqzrqqr1ngBPrgifHhDYfgaiqaacqWFLicucaWG1b Gae8xjIa1aa0baaSqaaiaaikdacaaISaGaam4CaaqaaiaaikdaaaGc cqGHsgIRciGGTbGaaiyAaiaac6gacaaISaGaaGzbVprr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae4NbXF0aaWbaaSqabeaa cqaH0oazaaGccaaIBbGaamyDaiaai2facaaI9aGae4NaXp0aaWbaaS qabeaacqaH0oazaaGccaaISaGaaGzbVlaadQeadaqhaaWcbaGaamyA aaqaaiabes7aKbaakiaaiUfacaWG1bGaaGyxaiabgsMiJkaaicdaca aISaGaaGzbVlaadMgacaaI9aWaa0aaaeaacaaIXaGaaGilaiaadUga aaGaaGilaiaaywW7caWG1bGaeyicI4Sae43aXtKaaGilaiaaiIcaca WGpbGaam4qamaaDaaaleaacqaH1oqzaeaacqaH0oazaaGccaaIPaaa aa@822A@

с (дополнительным) параметром регуляризации ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH1o qzaaa@3570@  в целевом функционале. Очевидно, в каждой из задач ( O C ε δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacqaH1oqzaeaacqaH0oazaaaaaa@38DE@  ) c ε>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH1o qzcaaI+aGaaGimaaaa@36F2@  функционал качества J 0 δ []+ε 2,s 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaeyyXICTaaGyx aiabgUcaRiabew7aLfbbfv3ySLgzGueE0jxyaGabaiab=vIiqjabgw Sixlab=vIiqnaaDaaaleaacaaIYaGaaGilaiaadohaaeaacaaIYaaa aaaa@4A3D@  является непрерывным и сильно выпуклым на D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ebaa@3F0F@  с постоянной сильной выпуклости ε>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH1o qzcaaI+aGaaGimaaaa@36F2@ . При некоторых конкретных ε>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH1o qzcaaI+aGaaGimaaaa@36F2@ , δ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcaaI+aGaaGimaaaa@36F0@  задача ( O C ε δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacqaH1oqzaeaacqaH0oazaaaaaa@38DE@  ) может не иметь решения из-за возможной пустоты множества допустимых элементов. В случае же непустоты этого множества решение задачи ( O C ε δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacqaH1oqzaeaacqaH0oazaaaaaa@38DE@  ) существует и единственно, будем обозначать его u ε δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b Waa0baaSqaaiabew7aLbqaaiabes7aKbaaaaa@383C@ . Примем при этом обозначение u 0 0 u 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b Waa0baaSqaaiaaicdaaeaacaaIWaaaaOGaeyyyIORaamyDamaaCaaa leqabaGaaGimaaaaaaa@3A18@ , напомнив, что через u 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacaaIWaaaaaaa@35AA@  мы обозначаем элементы множества U 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGvb WaaWbaaSqabeaacaaIWaaaaaaa@358A@  всех решений задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ), которое может быть и пустым.

Введём регулярную функцию Лагранжа задачи ( O C ε δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacqaH1oqzaeaacqaH0oazaaaaaa@38DE@  )

L δ,ε (u,λ,μ) J 0 δ [u]+εu 2,s 2 + λ, G δ [u] C δ H + μ, J δ [u] k , L 0,0 (u,λ,μ) L 0 (u,λ,μ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOGaaGikaiaadwha caaISaGaeq4UdWMaaGilaiabeY7aTjaaiMcacqGHHjIUcaWGkbWaa0 baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2facqGH RaWkcqaH1oqzrqqr1ngBPrgifHhDYfgaiqaacqWFLicucaWG1bGae8 xjIa1aa0baaSqaaiaaikdacaaISaGaam4CaaqaaiaaikdaaaGccqGH RaWkcqGHPms4cqaH7oaBcaaISaWefv3ySLgznfgDOfdaryqr1ngBPr ginfgDObYtUvgaiuaacqGFge=rdaahaaWcbeqaaiabes7aKbaakiaa iUfacaWG1bGaaGyxaiabgkHiTiab+jq8dnaaCaaaleqabaGaeqiTdq gaaOGaeyOkJe=aaSbaaSqaaiaadIeaaeqaaOGaey4kaSIaeyykJeUa eqiVd0MaaGilaiaadQeadaahaaWcbeqaaiabes7aKbaakiaaiUfaca WG1bGaaGyxaiabgQYiXpaaBaaaleaacaWGRbaabeaakiaaiYcacaaM f8UaamitamaaCaaaleqabaGaaGimaiaaiYcacaaIWaaaaOGaaGikai aadwhacaaISaGaeq4UdWMaaGilaiabeY7aTjaaiMcacqGHHjIUcaWG mbWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadwhacaaISaGaeq4UdW MaaGilaiabeY7aTjaaiMcacaaISaaaaa@977B@

где u L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI4SaamitamaaDaaaleaacaaIYaaabaGaam4Caaaaaaa@38F9@ , λH MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH7o aBcqGHiiIZcaWGibaaaa@37CE@ , μ + k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH8o qBcqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGab aiab=1risnaaDaaaleaacqGHRaWkaeaacaWGRbaaaaaa@43B9@ , J δ [u]{ J 1 δ [u],, J k δ [u]} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb WaaWbaaSqabeaacqaH0oazaaGccaaIBbGaamyDaiaai2facqGHHjIU caaI7bGaamOsamaaDaaaleaacaaIXaaabaGaeqiTdqgaaOGaaG4wai aadwhacaaIDbGaaGilaiablAciljaaiYcacaWGkbWaa0baaSqaaiaa dUgaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2facaaI9baaaa@4C2A@ . При любых ε>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH1o qzcaaI+aGaaGimaaaa@36F2@ , λH MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH7o aBcqGHiiIZcaWGibaaaa@37CE@ , μ + k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH8o qBcqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGab aiab=1risnaaDaaaleaacqGHRaWkaeaacaWGRbaaaaaa@43B9@  и каждом δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3C90@  функция L δ,ε (u,λ,μ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOGaaGikaiaadwha caaISaGaeq4UdWMaaGilaiabeY7aTjaaiMcaaaa@4008@  сильно выпукла с постоянной сильной выпуклости ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH1o qzaaa@3570@  и непрерывна как функция переменной u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b aaaa@34C3@  в L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGZbaaaaaa@367B@ , а следовательно, достигает минимума при любых λH MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH7o aBcqGHiiIZcaWGibaaaa@37CE@ , μ + k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH8o qBcqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGab aiab=1risnaaDaaaleaacqGHRaWkaeaacaWGRbaaaaaa@43B9@  на ограниченном выпуклом и замкнутом в L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGZbaaaaaa@367B@  множестве D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ebaa@3F0F@ , причём в единственной точке, которую будем обозначать через u δ,ε [λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOGaaG4waiabeU7a SjaaiYcacqaH8oqBcaaIDbaaaa@3EE8@  (см., например, [6, гл. 8, § MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGNc aaaa@34F3@  2, теорема 10]).

Двойственной к задаче оптимального управления ( O C ε δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacqaH1oqzaeaacqaH0oazaaaaaa@38DE@  ) является задача

                               V δ,ε (λ,μ) min uD L δ,ε (u,λ,μ)sup,λH,μ + k . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGwb WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOGaaGikaiabeU7a SjaaiYcacqaH8oqBcaaIPaGaeyyyIO7aaybuaeqaleaacaWG1bGaey icI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWF depraeqakeaaciGGTbGaaiyAaiaac6gaaaGaamitamaaCaaaleqaba GaeqiTdqMaaGilaiabew7aLbaakiaaiIcacaWG1bGaaGilaiabeU7a SjaaiYcacqaH8oqBcaaIPaGaeyOKH4Qaci4CaiaacwhacaGGWbGaaG ilaiaaywW7cqaH7oaBcqGHiiIZcaWGibGaaGilaiaaywW7cqaH8oqB cqGHiiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGqbai ab+1risnaaDaaaleaacqGHRaWkaeaacaWGRbaaaOGaaGOlaaaa@7B97@

Соответственно задача

                      V 0 (λ,μ) V 0,0 (λ,μ) min uD L 0 (u,λ,μ)sup,{λ,μ}H× + k , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGwb WaaWbaaSqabeaacaaIWaaaaOGaaGikaiabeU7aSjaaiYcacqaH8oqB caaIPaGaeyyyIORaamOvamaaCaaaleqabaGaaGimaiaaiYcacaaIWa aaaOGaaGikaiabeU7aSjaaiYcacqaH8oqBcaaIPaGaeyyyIO7aaybu aeqaleaacaWG1bGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiqaacqWFdepraeqakeaaciGGTbGaaiyAaiaac6gaaaGa amitamaaCaaaleqabaGaaGimaaaakiaaiIcacaWG1bGaaGilaiabeU 7aSjaaiYcacqaH8oqBcaaIPaGaeyOKH4Qaci4CaiaacwhacaGGWbGa aGilaiaaywW7caaI7bGaeq4UdWMaaGilaiabeY7aTjaai2hacqGHii IZcaWGibGaey41aq7efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv 39gaiuaacqGFDeIudaqhaaWcbaGaey4kaScabaGaam4AaaaakiaaiY caaaa@80A0@

является двойственной к задаче (O C 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa Gaam4taiaadoeadaahaaWcbeqaaiaaicdaaaGccaaIPaaaaa@37BB@ . Обозначим через ( λ δ,α,ε , μ δ,α,ε ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa Gaeq4UdW2aaWbaaSqabeaacqaH0oazcaaISaGaeqySdeMaaGilaiab ew7aLbaakiaaiYcacqaH8oqBdaahaaWcbeqaaiabes7aKjaaiYcacq aHXoqycaaISaGaeqyTdugaaOGaaGykaaaa@466A@  единственную точку, дающую на H× + k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGib Gaey41aq7efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIudaqhaaWcbaGaey4kaScabaGaam4Aaaaaaaa@4363@  максимум сильно вогнутому функционалу

R δ,α,ε (λ,μ) V δ,ε (λ,μ)αλ H 2 αμ k 2 ,λH,μ + k ,α>0,ε>0,δ(0, δ 0 ]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGsb WaaWbaaSqabeaacqaH0oazcaaISaGaeqySdeMaaGilaiabew7aLbaa kiaaiIcacqaH7oaBcaaISaGaeqiVd0MaaGykaiabggMi6kaadAfada ahaaWcbeqaaiabes7aKjaaiYcacqaH1oqzaaGccaaIOaGaeq4UdWMa aGilaiabeY7aTjaaiMcacqGHsislcqaHXoqyrqqr1ngBPrgifHhDYf gaiqaacqWFLicucqaH7oaBcqWFLicudaqhaaWcbaGaamisaaqaaiaa ikdaaaGccqGHsislcqaHXoqycqWFLicucqaH8oqBcqWFLicudaqhaa WcbaGaam4AaaqaaiaaikdaaaGccaaISaGaaGzbVlabeU7aSjabgIGi olaadIeacaaISaGaaGzbVlabeY7aTjabgIGioprr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbacfaGae4xhHi1aa0baaSqaaiabgUca RaqaaiaadUgaaaGccaaISaGaaGzbVlabeg7aHjaai6dacaaIWaGaaG ilaiaaywW7cqaH1oqzcaaI+aGaaGimaiaaiYcacaaMf8UaeqiTdqMa eyicI4SaaGikaiaaicdacaaISaGaeqiTdq2aaSbaaSqaaiaaicdaae qaaOGaaGyxaiaai6caaaa@9161@

Переформулируем теоремы 2 и 3 из [32] в терминах нашей задачи ( O C δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaeqiTdqgaaaaa@3737@  ). 

3.1. Регуляризирующий двойственный алгоритм в задаче оптимального управления

Пусть α():(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHXo qycaaIOaGaeyyXICTaaGykaiaaiQdacaaIOaGaaGimaiaaiYcacqaH 0oazdaWgaaWcbaGaaGimaaqabaGccaaIDbGaeyOKH46efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuaaa@4C1D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  некоторая положительнозначная функция такая, что

                                                  δ α(δ) 0,α(δ)0приδ0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaWcaa qaaiabes7aKbqaaiabeg7aHjaaiIcacqaH0oazcaaIPaaaaiabgkzi UkaaicdacaaISaGaaGzbVlabeg7aHjaaiIcacqaH0oazcaaIPaGaey OKH4QaaGimaiaaywW7caqG=qGaaeiqeiaabIdbcqqH0oazcqGHsgIR caqGWaGaaeOlaaaa@4F33@    (12)

Теорему 2 из [32] (теорему сходимости метода двойственной регуляризации с дополнительным параметром регуляризации ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH1o qzaaa@3570@  в функционале цели) переформулируем следующим образом.

Теорема 1 (регуляризирующий двойственный алгоритм в задаче оптимального управления). Пусть выполняется условие согласования (12), δ j (0, δ 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azdaahaaWcbeqaaiaadQgaaaGccqGHiiIZcaaIOaGaaGimaiaaiYca cqaH0oazdaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@3D82@ , ε j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH1o qzdaahaaWcbeqaaiaadQgaaaaaaa@368C@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E7@ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  последовательности сходящихся к нулю положительных чисел. Тогда оператор R(, δ j ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGsb GaaGikaiabgwSixlaaiYcacqaH0oazdaahaaWcbeqaaiaadQgaaaGc caaIPaaaaa@3BD0@ , ставящий в соответствие набору исходных данных f δ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGQbaaaaaaaaa@3795@ , удовлетворяющих оценкам (5), (6) условий Б, В при δ= δ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcaaI9aGaeqiTdq2aaWbaaSqabeaacaWGQbaaaaaa@38F6@ , управление R( f δ j , δ j ) u δ j , ε j [ λ δ j ,α( δ j ), ε j , μ δ j ,α( δ j ), ε j ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGsb GaaGikaiaabAgadaahaaWcbeqaaiabes7aKnaaCaaabeqaaiaadQga aaaaaOGaaGilaiabes7aKnaaCaaaleqabaGaamOAaaaakiaaiMcacq GHHjIUcaWG1bWaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGQbaa aiaaiYcacqaH1oqzdaahaaqabeaacaWGQbaaaaaakiaaiUfacqaH7o aBdaahaaWcbeqaaiabes7aKnaaCaaabeqaaiaadQgaaaGaaGilaiab eg7aHjaaiIcacqaH0oazdaahaaqabeaacaWGQbaaaiaaiMcacaaISa GaeqyTdu2aaWbaaeqabaGaamOAaaaaaaGccaaISaGaeqiVd02aaWba aSqabeaacqaH0oazdaahaaqabeaacaWGQbaaaiaaiYcacqaHXoqyca aIOaGaeqiTdq2aaWbaaeqabaGaamOAaaaacaaIPaGaaGilaiabew7a LnaaCaaabeqaaiaadQgaaaaaaOGaaGyxaaaa@65FC@ , является МПР-образующим в задаче оптимального управления ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@ ) в смысле определения 1.

3.2. Регуляризованный принцип Лагранжа в задаче оптимального управления

Теорема 3 из [32] (регуляризованный принцип Лагранжа для задачи выпуклого программирования с выпуклым (вообще говоря, не сильно выпуклым) целевым функционалом; подчеркнём, что его формулировка благодаря секвенциальному подходу учитывает одновременно как регулярный, так и нерегулярный случаи задачи) переформулируется так.

Теорема 2 (регуляризованный принцип Лагранжа для задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@ )). Пусть { ε j } j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaeqyTdu2aaWbaaSqabeaacaWGQbaaaOGaaGyFamaaDaaaleaacaWG QbGaaGypaiaaigdaaeaacqGHEisPaaaaaa@3CB1@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  произвольная фиксированная последовательность сходящихся к нулю положительных чисел. МПР в задаче ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ) существует тогда и только тогда, когда существуют стремящиеся к нулю последовательности положительных чисел { δ j } j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaeqiTdq2aaWbaaSqabeaacaWGQbaaaOGaaGyFamaaDaaaleaacaWG QbGaaGypaiaaigdaaeaacqGHEisPaaaaaa@3CAF@ , { γ j } j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4SdC2aaWbaaSqabeaacaWGQbaaaOGaaGyFamaaDaaaleaacaWG QbGaaGypaiaaigdaaeaacqGHEisPaaaaaa@3CB1@  и последовательность пар векторов двойственных переменных { λ j , μ j } j=1 H× + k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdW2aaWbaaSqabeaacaWGQbaaaOGaaGilaiabeY7aTnaaCaaa leqabaGaamOAaaaakiaai2hadaqhaaWcbaGaamOAaiaai2dacaaIXa aabaGaeyOhIukaaOGaeyOGIWSaamisaiabgEna0orr1ngBPrwtHrhA YaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aa0baaSqaaiabgU caRaqaaiaadUgaaaaaaa@51F0@  такие, что

                                                δ j { λ j H + μ j k }0приj MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azdaahaaWcbeqaaiaadQgaaaGccaaI7bqeeuuDJXwAKbsr4rNCHbac eaGae8xjIaLaeq4UdW2aaWbaaSqabeaacaWGQbaaaOGae8xjIa1aaS baaSqaaiaadIeaaeqaaOGaey4kaSIae8xjIaLaeqiVd02aaWbaaSqa beaacaWGQbaaaOGae8xjIa1aaSbaaSqaaiaadUgaaeqaaOGaaGyFai abgkziUkaaicdacaaMf8Uaae4peiaabcebcaqG4qGaaeOAaiabgkzi Ukabg6HiLcaa@5538@      (13)

 и выполняются включения

                                                      u δ j , ε j [ λ j , μ j ] D δ j , γ j ,j, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGQbaaaiaaiYcacqaH 1oqzdaahaaqabeaacaWGQbaaaaaakiaaiUfacqaH7oaBdaahaaWcbe qaaiaadQgaaaGccaaISaGaeqiVd02aaWbaaSqabeaacaWGQbaaaOGa aGyxaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb aceaGae83aXt0aaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGQbaa aiaaiYcacqaHZoWzdaahaaqabeaacaWGQbaaaaaakiaaiYcacaaMf8 UaamOAaiabgIGioprr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1D VbacfaGae4xfH4KaaGilaaaa@6694@            (14)

 а также предельное соотношение

         λ j , G δ j [ u δ j , ε j [ λ j , μ j ]] C δ j H + μ j , J δ j [ u δ j , ε j [ λ j , μ j ]] k 0приj. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHPm s4cqaH7oaBdaahaaWcbeqaaiaadQgaaaGccaaISaWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiqaacqWFge=rdaahaaWcbeqaai abes7aKnaaCaaabeqaaiaadQgaaaaaaOGaaG4waiaadwhadaahaaWc beqaaiabes7aKnaaCaaabeqaaiaadQgaaaGaaGilaiabew7aLnaaCa aabeqaaiaadQgaaaaaaOGaaG4waiabeU7aSnaaCaaaleqabaGaamOA aaaakiaaiYcacqaH8oqBdaahaaWcbeqaaiaadQgaaaGccaaIDbGaaG yxaiabgkHiTiab=jq8dnaaCaaaleqabaGaeqiTdq2aaWbaaeqabaGa amOAaaaaaaGccqGHQms8daWgaaWcbaGaamisaaqabaGccqGHRaWkcq GHPms4cqaH8oqBdaahaaWcbeqaaiaadQgaaaGccaaISaGaamOsamaa CaaaleqabaGaeqiTdq2aaWbaaeqabaGaamOAaaaaaaGccaaIBbGaam yDamaaCaaaleqabaGaeqiTdq2aaWbaaeqabaGaamOAaaaacaaISaGa eqyTdu2aaWbaaeqabaGaamOAaaaaaaGccaaIBbGaeq4UdW2aaWbaaS qabeaacaWGQbaaaOGaaGilaiabeY7aTnaaCaaaleqabaGaamOAaaaa kiaai2facaaIDbGaeyOkJe=aaSbaaSqaaiaadUgaaeqaaOGaeyOKH4 QaaGimaiaaywW7caqG=qGaaeiqeiaabIdbcaqGQbGaeyOKH4QaeyOh IuQaaeOlaaaa@8AB5@     (15)

 Если указанные последовательности { δ j } j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaeqiTdq2aaWbaaSqabeaacaWGQbaaaOGaaGyFamaaDaaaleaacaWG QbGaaGypaiaaigdaaeaacqGHEisPaaaaaa@3CAF@ , { γ j } j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4SdC2aaWbaaSqabeaacaWGQbaaaOGaaGyFamaaDaaaleaacaWG QbGaaGypaiaaigdaaeaacqGHEisPaaaaaa@3CB1@  и { λ j , μ j } j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdW2aaWbaaSqabeaacaWGQbaaaOGaaGilaiabeY7aTnaaCaaa leqabaGaamOAaaaakiaai2hadaqhaaWcbaGaamOAaiaai2dacaaIXa aabaGaeyOhIukaaaaa@4050@  существуют, то последовательность u δ j , ε j [ λ j , μ j ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGQbaaaiaaiYcacqaH 1oqzdaahaaqabeaacaWGQbaaaaaakiaaiUfacqaH7oaBdaahaaWcbe qaaiaadQgaaaGccaaISaGaeqiVd02aaWbaaSqabeaacaWGQbaaaOGa aGyxaaaa@4356@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E7@ , является МПР задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ), т.е. помимо (??) выполняется и предельное соотношение (здесь u 0 U 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacaaIWaaaaOGaeyicI4SaamyvamaaCaaaleqabaGa aGimaaaaaaa@38F9@  )

                                             J 0 0 [ u δ j , ε j [ λ j , μ j ]] J 0 0 [ u 0 ]приj. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacaaIWaaaaOGaaG4waiaadwhadaahaaWc beqaaiabes7aKnaaCaaabeqaaiaadQgaaaGaaGilaiabew7aLnaaCa aabeqaaiaadQgaaaaaaOGaaG4waiabeU7aSnaaCaaaleqabaGaamOA aaaakiaaiYcacqaH8oqBdaahaaWcbeqaaiaadQgaaaGccaaIDbGaaG yxaiabgkziUkaadQeadaqhaaWcbaGaaGimaaqaaiaaicdaaaGccaaI BbGaamyDamaaCaaaleqabaGaaGimaaaakiaai2facaaMf8Uaae4pei aabcebcaqG4qGaaeOAaiabgkziUkabg6HiLkaab6caaaa@5890@

Как следствие соотношений (??) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ (??) выполняется и предельное соотношение

                                V 0 ( λ j , μ j ) sup {λ,μ}H× + k V 0 (λ,μ)= J 0 0 [ u 0 ]приj. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGwb WaaWbaaSqabeaacaaIWaaaaOGaaGikaiabeU7aSnaaCaaaleqabaGa amOAaaaakiaaiYcacqaH8oqBdaahaaWcbeqaaiaadQgaaaGccaaIPa GaeyOKH46aaybuaeqaleaacaaI7bGaeq4UdWMaaGilaiabeY7aTjaa i2hacqGHiiIZcaWGibGaey41aq7efv3ySLgznfgDOjdaryqr1ngBPr ginfgDObcv39gaiqaacqWFDeIudaqhaaqaaiabgUcaRaqaaiaadUga aaaabeGcbaGaci4CaiaacwhacaGGWbaaaiaadAfadaahaaWcbeqaai aaicdaaaGccaaIOaGaeq4UdWMaaGilaiabeY7aTjaaiMcacaaI9aGa amOsamaaDaaaleaacaaIWaaabaGaaGimaaaakiaaiUfacaWG1bWaaW baaSqabeaacaaIWaaaaOGaaGyxaiaaywW7caqG=qGaaeiqeiaabIdb caqGQbGaeyOKH4QaeyOhIuQaaeOlaaaa@711B@

Другими словами, вне зависимости от того, разрешима или нет двойственная к ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ) задача, алгоритм R(, δ j ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGsb GaaGikaiabgwSixlaaiYcacqaH0oazdaahaaWcbeqaaiaadQgaaaGc caaIPaaaaa@3BD0@ , задаваемый равенством R( f δ j , δ j )= u δ j , ε j [ λ j , μ j ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGsb GaaGikaiaabAgadaahaaWcbeqaaiabes7aKnaaCaaabeqaaiaadQga aaaaaOGaaGilaiabes7aKnaaCaaaleqabaGaamOAaaaakiaaiMcaca aI9aGaamyDamaaCaaaleqabaGaeqiTdq2aaWbaaeqabaGaamOAaaaa caaISaGaeqyTdu2aaWbaaeqabaGaamOAaaaaaaGccaaIBbGaeq4UdW 2aaWbaaSqabeaacaWGQbaaaOGaaGilaiabeY7aTnaaCaaaleqabaGa amOAaaaakiaai2faaaa@4DB0@  для каждого набора исходных данных f δ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGQbaaaaaaaaa@3795@ , удовлетворяющих оценкам (5), (6) условий Б, В при δ= δ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcaaI9aGaeqiTdq2aaWbaaSqabeaacaWGQbaaaaaa@38F6@ , является МПР-образующим в смысле определения , причём каждая слабая предельная точка последовательности u δ j , ε j [ λ j , μ j ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGQbaaaiaaiYcacqaH 1oqzdaahaaqabeaacaWGQbaaaaaakiaaiUfacqaH7oaBdaahaaWcbe qaaiaadQgaaaGccaaISaGaeqiVd02aaWbaaSqabeaacaWGQbaaaOGa aGyxaaaa@4356@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E7@ , является решением задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ).

В качестве конкретной последовательности { λ j , μ j } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdW2aaWbaaSqabeaacaWGQbaaaOGaaGilaiabeY7aTnaaCaaa leqabaGaamOAaaaakiaai2haaaa@3C41@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E7@ , можно взять последовательность { λ δ j ,α( δ j ), ε j , μ δ j ,α( δ j ), ε j } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdW2aaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGQbaaaiaa iYcacqaHXoqycaaIOaGaeqiTdq2aaWbaaeqabaGaamOAaaaacaaIPa GaaGilaiabew7aLnaaCaaabeqaaiaadQgaaaaaaOGaaGilaiabeY7a TnaaCaaaleqabaGaeqiTdq2aaWbaaeqabaGaamOAaaaacaaISaGaeq ySdeMaaGikaiabes7aKnaaCaaabeqaaiaadQgaaaGaaGykaiaaiYca cqaH1oqzdaahaaqabeaacaWGQbaaaaaakiaai2haaaa@538B@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E7@ , о которой идет речь в теореме .[5]

Замечание 2. Можно утверждать, что в случае сильной выпуклости функционала J 0 0 [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacaaIWaaaaOGaaG4waiaadwhacaaIDbaa aa@3909@ , uD, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaa cqWFdeprcaaISaaaaa@4243@  генерируемая теоремой  последовательность u δ j , ε j [ λ j , μ j ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGQbaaaiaaiYcacqaH 1oqzdaahaaqabeaacaWGQbaaaaaakiaaiUfacqaH7oaBdaahaaWcbe qaaiaadQgaaaGccaaISaGaeqiVd02aaWbaaSqabeaacaWGQbaaaOGa aGyxaaaa@4356@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E7@ , сильно сходится к единственному в этом случае решению задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ) (см. замечание ), при этом можно считать ε j =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH1o qzdaahaaWcbeqaaiaadQgaaaGccaaI9aGaaGimaaaa@3817@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E7@  (см., например, теоремы 4.1, 4.2 в [7]).

3.3. О минимизации функции Лагранжа

Ключевой задачей процедуры двойственной регуляризации процесса приближённого решения задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ), а также возможного применения регуляризованных КУО для практического решения задач оптимального управления, является задача минимизации функции (функционала) Лагранжа L δ,ε (u,λ,μ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOGaaGikaiaadwha caaISaGaeq4UdWMaaGilaiabeY7aTjaaiMcaaaa@4008@ , {λ,μ}H× + k , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdWMaaGilaiabeY7aTjaai2hacqGHiiIZcaWGibGaey41aq7e fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuda qhaaWcbaGaey4kaScabaGaam4AaaaakiaaiYcaaaa@4BD3@  задачи ( O C ε δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacqaH1oqzaeaacqaH0oazaaaaaa@38DE@  )

                                                         L δ,ε (u,λ,μ)min,uD, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOGaaGikaiaadwha caaISaGaeq4UdWMaaGilaiabeY7aTjaaiMcacqGHsgIRciGGTbGaai yAaiaac6gacaaISaGaaGzbVlaadwhacqGHiiIZtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=nq8ejaaiYcaaaa@5585@    (16)

 решение которой мы обозначили через u δ,ε [λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOGaaG4waiabeU7a SjaaiYcacqaH8oqBcaaIDbaaaa@3EE8@ . От “качества” решения этой “простейшей” задачи напрямую зависит и “качество” решения исходной задачи (O C 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa Gaam4taiaadoeadaahaaWcbeqaaiaaicdaaaGccaaIPaaaaa@37BB@  на основе регуляризованных КУО. Для упрощения изложения предположим, что при каждом δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3C90@  функционалы J i δ [z,u]: L 2 m × L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=Lq8knaaDaaa leaacaWGPbaabaGaeqiTdqgaaOGaaG4waiaadQhacaaISaGaamyDai aai2facaaI6aGaamitamaaDaaaleaacaaIYaaabaGaamyBaaaakiab gEna0kaadYeadaqhaaWcbaGaaGOmaaqaaiaadohaaaGccqGHsgIRtu uDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGqbaiab+1risbaa @5B52@  ( i= 0,k ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGimaiaaiYcacaWGRbaaaaaa@37EF@  ) дифференцируемы по Фреше. Тогда при каждых δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3C90@ , ε>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH1o qzcaaI+aGaaGimaaaa@36F2@  дифференцируемы по Фреше функционалы J i δ [u]: L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaadMgaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2fa caaI6aGaamitamaaDaaaleaacaaIYaaabaGaam4CaaaakiabgkziUo rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHifa aa@4A4C@  ( i= 0,k ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGimaiaaiYcacaWGRbaaaaaa@37EF@  ) и функционал Лагранжа L δ,ε (u,λ,μ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOGaaGikaiaadwha caaISaGaeq4UdWMaaGilaiabeY7aTjaaiMcaaaa@4008@ . В этом случае решение u δ,ε [λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOGaaG4waiabeU7a SjaaiYcacqaH8oqBcaaIDbaaaa@3EE8@  выпуклой задачи на минимум (16) удовлетворяет критерию минимума

                                     L δ,ε u / ( u δ,ε [λ,μ],λ,μ)[u u δ,ε [λ,μ]]0,uD, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOWaa0baaSqaaiaa dwhaaeaacaaIVaaaaOGaaGikaiaadwhadaahaaWcbeqaaiabes7aKj aaiYcacqaH1oqzaaGccaaIBbGaeq4UdWMaaGilaiabeY7aTjaai2fa caaISaGaeq4UdWMaaGilaiabeY7aTjaaiMcacaaIBbGaamyDaiabgk HiTiaadwhadaahaaWcbeqaaiabes7aKjaaiYcacqaH1oqzaaGccaaI BbGaeq4UdWMaaGilaiabeY7aTjaai2facaaIDbGaeyyzImRaaGimai aaiYcacaaMf8UaamyDaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbaceaGae83aXtKaaGilaaaa@6E27@     (17)

 где L δ,ε u / ( u ¯ ,λ,μ)[] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOWaa0baaSqaaiaa dwhaaeaacaaIVaaaaOGaaGikaiqadwhagaqeaiaaiYcacqaH7oaBca aISaGaeqiVd0MaaGykaiaaiUfacqGHflY1caaIDbaaaa@4620@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  производная Фреше функционала L δ,ε (u,λ,μ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOGaaGikaiaadwha caaISaGaeq4UdWMaaGilaiabeY7aTjaaiMcaaaa@4008@  по переменной u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b aaaa@34C3@  в точке u ¯ L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aaceWG1b GbaebacqGHiiIZcaWGmbWaa0baaSqaaiaaikdaaeaacaWGZbaaaaaa @3911@  при фиксированных λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH7o aBaaa@357D@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH8o qBaaa@357F@ . Пусть Ψ δ,ε [ u ¯ ,λ,μ]() L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHOo qwdaahaaWcbeqaaiabes7aKjaaiYcacqaH1oqzaaGccaaIBbGabmyD ayaaraGaaGilaiabeU7aSjaaiYcacqaH8oqBcaaIDbGaaGikaiabgw SixlaaiMcacqGHiiIZcaWGmbWaa0baaSqaaiaaikdaaeaacaWGZbaa aaaa@492A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  функция Рисса линейного непрерывного функционала L δ,ε u / ( u ¯ ,λ,μ)[] ( L 2 s ) * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOWaa0baaSqaaiaa dwhaaeaacaaIVaaaaOGaaGikaiqadwhagaqeaiaaiYcacqaH7oaBca aISaGaeqiVd0MaaGykaiaaiUfacqGHflY1caaIDbGaeyicI4SaaGik aiaadYeadaqhaaWcbaGaaGOmaaqaaiaadohaaaGccaaIPaWaaWbaaS qabeaacaaIQaaaaaaa@4CA6@ . Критерий (17) можно записать в виде

                                  Ψ δ,ε [ u δ,ε [λ,μ],λ,μ],u u δ,ε [λ,μ] 2,s 0,uD. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHPm s4cqqHOoqwdaahaaWcbeqaaiabes7aKjaaiYcacqaH1oqzaaGccaaI BbGaamyDamaaCaaaleqabaGaeqiTdqMaaGilaiabew7aLbaakiaaiU facqaH7oaBcaaISaGaeqiVd0MaaGyxaiaaiYcacqaH7oaBcaaISaGa eqiVd0MaaGyxaiaaiYcacaWG1bGaeyOeI0IaamyDamaaCaaaleqaba GaeqiTdqMaaGilaiabew7aLbaakiaaiUfacqaH7oaBcaaISaGaeqiV d0MaaGyxaiabgQYiXpaaBaaaleaacaaIYaGaaGilaiaadohaaeqaaO GaeyyzImRaaGimaiaaiYcacaaMf8UaamyDaiabgIGioprr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae83aXtKaaGOlaaaa@7271@       (18)

Найдём представление функции Ψ δ,ε [ u ¯ ,λ,μ](t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHOo qwdaahaaWcbeqaaiabes7aKjaaiYcacqaH1oqzaaGccaaIBbGabmyD ayaaraGaaGilaiabeU7aSjaaiYcacqaH8oqBcaaIDbGaaGikaiaads hacaaIPaaaaa@43A3@ , tΠ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b GaeyicI4SaeuiOdafaaa@37C4@ , в терминах приближения ( O C δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaeqiTdqgaaaaa@3737@  ), δ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcaaI+aGaaGimaaaa@36F0@ , к точной задаче оптимального управления ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ), а точнее MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  в терминах уравнения (7), операторов A δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=bq8bnaaCaaa leqabaGaeqiTdqgaaaaa@40DB@ , B δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=XsicnaaCaaa leqabaGaeqiTdqgaaaaa@4038@  и функционалов J i δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=Lq8knaaDaaa leaacaWGPbaabaGaeqiTdqgaaaaa@41DB@ , i= 0,k ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGimaiaaiYcacaWGRbaaaaaa@37EF@ , δ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcaaI+aGaaGimaaaa@36F0@ .

Пусть Ξ i δ [ u ¯ ]() L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHEo awdaqhaaWcbaGaamyAaaqaaiabes7aKbaakiaaiUfaceWG1bGbaeba caaIDbGaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaa0baaSqaai aaikdaaeaacaWGZbaaaaaa@42DA@ , Ω i δ [ u ¯ ]() L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHPo WvdaqhaaWcbaGaamyAaaqaaiabes7aKbaakiaaiUfaceWG1bGbaeba caaIDbGaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaa0baaSqaai aaikdaaeaacaWGTbaaaaaa@42DE@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  функции Рисса функционалов J i δ u / ( S δ B δ u ¯ + S δ c δ , u ¯ ) ( L 2 s ) * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=Lq8knaaDaaa leaacaWGPbaabaGaeqiTdqgaaOWaa0baaSqaaiaadwhaaeaacaaIVa aaaOGaaGikaiaadofadaahaaWcbeqaaiabes7aKbaakiaadkeadaah aaWcbeqaaiabes7aKbaakiqadwhagaqeaiabgUcaRiaadofadaahaa Wcbeqaaiabes7aKbaakiaadogadaahaaWcbeqaaiabes7aKbaakiaa iYcaceWG1bGbaebacaaIPaGaeyicI4SaaGikaiaadYeadaqhaaWcba GaaGOmaaqaaiaadohaaaGccaaIPaWaaWbaaSqabeaacaaIQaaaaaaa @5A45@ , J i δ z / ( S δ B δ u ¯ + S δ c δ , u ¯ ) ( L 2 m ) * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=Lq8knaaDaaa leaacaWGPbaabaGaeqiTdqgaaOWaa0baaSqaaiaadQhaaeaacaaIVa aaaOGaaGikaiaadofadaahaaWcbeqaaiabes7aKbaakiaadkeadaah aaWcbeqaaiabes7aKbaakiqadwhagaqeaiabgUcaRiaadofadaahaa Wcbeqaaiabes7aKbaakiaadogadaahaaWcbeqaaiabes7aKbaakiaa iYcaceWG1bGbaebacaaIPaGaeyicI4SaaGikaiaadYeadaqhaaWcba GaaGOmaaqaaiaad2gaaaGccaaIPaWaaWbaaSqabeaacaaIQaaaaaaa @5A44@  соответственно (i= 0,k ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamyAaiaai2dadaqdaaqaaiaaicdacaaISaGaam4AaaaacaaIPaaa aa@3954@ . По аналогии с [9, разд. 3.2] получаем

                                    Ψ δ,ε [ u ¯ ,λ,μ](t)= Ψ δ [ u ¯ ,λ,μ](t)+2ε u ¯ (t),tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHOo qwdaahaaWcbeqaaiabes7aKjaaiYcacqaH1oqzaaGccaaIBbGabmyD ayaaraGaaGilaiabeU7aSjaaiYcacqaH8oqBcaaIDbGaaGikaiaads hacaaIPaGaaGypaiabfI6aznaaCaaaleqabaGaeqiTdqgaaOGaaG4w aiqadwhagaqeaiaaiYcacqaH7oaBcaaISaGaeqiVd0MaaGyxaiaaiI cacaWG0bGaaGykaiabgUcaRiaaikdacqaH1oqzceWG1bGbaebacaaI OaGaamiDaiaaiMcacaaISaGaaGzbVlaadshacqGHiiIZcqqHGoauca aISaaaaa@5F91@

                       Ψ δ [ u ¯ ,λ,μ](t) ( B δ ) * [ ψ δ [ u ¯ ,λ,μ]](t)+ ϕ δ [ u ¯ ,λ,μ](t),tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHOo qwdaahaaWcbeqaaiabes7aKbaakiaaiUfaceWG1bGbaebacaaISaGa eq4UdWMaaGilaiabeY7aTjaai2facaaIOaGaamiDaiaaiMcacqGHHj IUcqGHsislcaaIOaGaamOqamaaCaaaleqabaGaeqiTdqgaaOGaaGyk amaaCaaaleqabaGaaGOkaaaakiaaiUfacqaHipqEdaahaaWcbeqaai abes7aKbaakiaaiUfaceWG1bGbaebacaaISaGaeq4UdWMaaGilaiab eY7aTjaai2facaaIDbGaaGikaiaadshacaaIPaGaey4kaSIaeqy1dy 2aaWbaaSqabeaacqaH0oazaaGccaaIBbGabmyDayaaraGaaGilaiab eU7aSjaaiYcacqaH8oqBcaaIDbGaaGikaiaadshacaaIPaGaaGilai aaywW7caWG0bGaeyicI4SaeuiOdaLaaGilaaaa@6E04@         (19)

 где ψ δ [ u ¯ ,λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEdaahaaWcbeqaaiabes7aKbaakiaaiUfaceWG1bGbaebacaaISaGa eq4UdWMaaGilaiabeY7aTjaai2faaaa@3F27@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  единственное в L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGTbaaaaaa@3675@  решение уравнения

                 ψ(t) ( A δ ) * [ψ](t)= Ω 0 δ [ u ¯ ](t) i=1 k μ i Ω i δ [ u ¯ ](t) ( A δ ) * [λ](t),tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEcaaIOaGaamiDaiaaiMcacqGHsislcaaIOaGaamyqamaaCaaaleqa baGaeqiTdqgaaOGaaGykamaaCaaaleqabaGaaGOkaaaakiaaiUfacq aHipqEcaaIDbGaaGikaiaadshacaaIPaGaaGypaiabgkHiTiabfM6a xnaaDaaaleaacaaIWaaabaGaeqiTdqgaaOGaaG4waiqadwhagaqeai aai2facaaIOaGaamiDaiaaiMcacqGHsisldaaeWbqabSqaaiaadMga caaI9aGaaGymaaqaaiaadUgaa0GaeyyeIuoakiabeY7aTnaaBaaale aacaWGPbaabeaakiabfM6axnaaDaaaleaacaWGPbaabaGaeqiTdqga aOGaaG4waiqadwhagaqeaiaai2facaaIOaGaamiDaiaaiMcacqGHsi slcaaIOaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaa cqWFaeFqdaahaaWcbeqaaiabes7aKbaakiaaiMcadaahaaWcbeqaai aaiQcaaaGccaaIBbGaeq4UdWMaaGyxaiaaiIcacaWG0bGaaGykaiaa iYcacaaMf8UaamiDaiabgIGiolabfc6aqjaaiYcaaaa@7F14@       (20)

  ϕ δ [ u ¯ ,λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHvp GzdaahaaWcbeqaaiabes7aKbaakiaaiUfaceWG1bGbaebacaaISaGa eq4UdWMaaGilaiabeY7aTjaai2faaaa@3F21@  задаётся формулой

                                 ϕ δ [ u ¯ ,λ,μ] Ξ 0 δ [ u ¯ ]+ i=1 k μ i Ξ i δ [ u ¯ ]+ ( B δ ) * [λ], u ¯ L 2 s . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHvp GzdaahaaWcbeqaaiabes7aKbaakiaaiUfaceWG1bGbaebacaaISaGa eq4UdWMaaGilaiabeY7aTjaai2facqGHHjIUcqqHEoawdaqhaaWcba GaaGimaaqaaiabes7aKbaakiaaiUfaceWG1bGbaebacaaIDbGaey4k aSYaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGRbaaniabgg HiLdGccqaH8oqBdaWgaaWcbaGaamyAaaqabaGccqqHEoawdaqhaaWc baGaamyAaaqaaiabes7aKbaakiaaiUfaceWG1bGbaebacaaIDbGaey 4kaSIaaGikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac eaGae8hlHi0aaWbaaSqabeaacqaH0oazaaGccaaIPaWaaWbaaSqabe aacaaIQaaaaOGaaG4waiabeU7aSjaai2facaaISaGaaGzbVlqadwha gaqeaiabgIGiolaadYeadaqhaaWcbaGaaGOmaaqaaiaadohaaaGcca aIUaaaaa@73F0@      (21)

3.4. Случай ограниченных управлений

Рассмотрим задачу оптимального управления ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ) в ситуации, когда допустимые управления принимают значения из некоторого ограниченного замкнутого и выпуклого множества U s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGvb GaeyOGIW8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIudaahaaWcbeqaaiaadohaaaaaaa@427B@  (т.е. D{u() L s :u(t)U MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ejabggMi 6kaaiUhacaWG1bGaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaa0 baaSqaaiabg6HiLcqaaiaadohaaaGccaaI6aGaamyDaiaaiIcacaWG 0bGaaGykaiabgIGiolaadwfaaaa@51F5@ , tΠ} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b GaeyicI4SaeuiOdaLaaGyFaaaa@38CB@  ). В этом случае получаем из (??) критерий минимума функционала Лагранжа в виде следующего линеаризованного поточечного принципа максимума, который доказывается точно так же как лемма 5 в статье [9].

 Лемма 3. Функция u ¯ ()D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aaceWG1b GbaebacaaIOaGaeyyXICTaaGykaiabgIGioprr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbaceaGae83aXteaaa@4554@  является решением задачи (16) тогда и только тогда, когда

             Ψδ,εu¯,λ,μtu¯tswUΨδ,εu¯,λ,μtws при почти всех tΠ,    (22)

 где Ψ δ,ε [ u ¯ ,λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHOo qwdaahaaWcbeqaaiabes7aKjaaiYcacqaH1oqzaaGccaaIBbGabmyD ayaaraGaaGilaiabeU7aSjaaiYcacqaH8oqBcaaIDbaaaa@4145@  задаётся формулой (??), в которой ψ δ [ u ¯ ,λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEdaahaaWcbeqaaiabes7aKbaakiaaiUfaceWG1bGbaebacaaISaGa eq4UdWMaaGilaiabeY7aTjaai2faaaa@3F27@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  решение сопряжённого уравнения (20), а ϕ δ [ u ¯ ,λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHvp GzdaahaaWcbeqaaiabes7aKbaakiaaiUfaceWG1bGbaebacaaISaGa eq4UdWMaaGilaiabeY7aTjaai2faaaa@3F21@  определяется формулой (??).

Обозначим через U m δ,ε [λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGvb Waa0baaSqaaiaad2gaaeaacqaH0oazcaaISaGaeqyTdugaaOGaaG4w aiabeU7aSjaaiYcacqaH8oqBcaaIDbaaaa@3FBA@  множество всех управлений из D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ebaa@3F0F@ , удовлетворяющих (при сформулированных выше дополнительных условиях дифференцируемости) принципу максимума леммы . Очевидно, что в нашем случае, благодаря сильной выпуклости целевого функционала, множество U m δ,ε [λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGvb Waa0baaSqaaiaad2gaaeaacqaH0oazcaaISaGaeqyTdugaaOGaaG4w aiabeU7aSjaaiYcacqaH8oqBcaaIDbaaaa@3FBA@  состоит из одного элемента, обозначим его через u m δ,ε [λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b Waa0baaSqaaiaad2gaaeaacqaH0oazcaaISaGaeqyTdugaaOGaaG4w aiabeU7aSjaaiYcacqaH8oqBcaaIDbaaaa@3FDA@ , и справедливо равенство u m δ,ε [λ,μ]= u δ,ε [λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b Waa0baaSqaaiaad2gaaeaacqaH0oazcaaISaGaeqyTdugaaOGaaG4w aiabeU7aSjaaiYcacqaH8oqBcaaIDbGaaGypaiaadwhadaahaaWcbe qaaiabes7aKjaaiYcacqaH1oqzaaGccaaIBbGaeq4UdWMaaGilaiab eY7aTjaai2faaaa@4BC0@ . Поэтому непосредственным следствием теоремы  и леммы  является регуляризованный ПМП для задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ).

Теорема 3. (регуляризованный ПМП в задаче оптимального управления (O C 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa Gaam4taiaadoeadaahaaWcbeqaaiaaicdaaaGccaaIPaaaaa@37BB@ ). При сформулированных дополнительных условиях дифференцируемости все утверждения теоремы  останутся справедливыми, если в них u δ j , ε j [ λ j , μ j ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGQbaaaiaaiYcacqaH 1oqzdaahaaqabeaacaWGQbaaaaaakiaaiUfacqaH7oaBdaahaaWcbe qaaiaadQgaaaGccaaISaGaeqiVd02aaWbaaSqabeaacaWGQbaaaOGa aGyxaaaa@4356@  заменить на u m δ j , ε j [ λ j , μ j ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b Waa0baaSqaaiaad2gaaeaacqaH0oazdaahaaqabeaacaWGQbaaaiaa iYcacqaH1oqzdaahaaqabeaacaWGQbaaaaaakiaaiUfacqaH7oaBda ahaaWcbeqaaiaadQgaaaGccaaISaGaeqiVd02aaWbaaSqabeaacaWG QbaaaOGaaGyxaaaa@4448@ .

4. МЕТОД ВОЗМУЩЕНИЙ, СУБДИФФЕРЕНЦИАЛЫ И ПРЕДЕЛЬНЫЙ ПЕРЕХОД В РЕГУЛЯРИЗОВАННЫХ УСЛОВИЯХ ОПТИМАЛЬНОСТИ

Как отмечено во введении, одной из важных особенностей получаемых в работе регуляризованных КУО является то, что “в пределе” они приводят к своим классическим аналогам. Покажем это. Воспользуемся методом вомущений (см., например, [1, п. 3.3.2]), который позволяет установить жёсткую связь регуляризованных КУО с их классическими аналогами и обосновать новый секвенциальный способ получения КУО в выпуклых задачах на условный экстремум. Этот новый способ доказательства КУО, как необходимых условий оптимальности (доказательство начинается с предположения существования оптимального элемента), опирается на полученные ранее (см., например, [7, 8]) регуляризованные КУО в параметрических выпуклых задачах с сильно выпуклыми целевыми функционалами (до сих пор в настоящей работе рассматривались задачи без параметров). Для перехода к пределу в полученном регуляризованном ПЛ (см. теорему ) c применением метода возмущений рассмотрим вместо задачи ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ) параметрическую (зависящую от параметров в ограничениях) задачу

                 J 0 0 [u]min, G 0 [u]= C 0 +p, J i 0 [u] r i ,i= 1,k ¯ ,uD,(O C p,r 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacaaIWaaaaOGaaG4waiaadwhacaaIDbGa eyOKH4QaciyBaiaacMgacaGGUbGaaGilaiaaywW7tuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=zq8hnaaCaaaleqabaGa aGimaaaakiaaiUfacaWG1bGaaGyxaiaai2dacqWFce=qdaahaaWcbe qaaiaaicdaaaGccqGHRaWkcaWGWbGaaGilaiaaywW7caWGkbWaa0ba aSqaaiaadMgaaeaacaaIWaaaaOGaaG4waiaadwhacaaIDbGaeyizIm QaamOCamaaBaaaleaacaWGPbaabeaakiaaiYcacaaMf8UaamyAaiaa i2dadaqdaaqaaiaaigdacaaISaGaam4AaaaacaaISaGaaGzbVlaadw hacqGHiiIZcqWFdeprcaaISaGaaGikaiaad+eacaWGdbWaa0baaSqa aiaadchacaaISaGaamOCaaqaaiaaicdaaaGccaaIPaaaaa@7415@

где pH MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGWb GaeyicI4Saamisaaaa@370F@ , r k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGYb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIudaahaaWcbeqaaiaadUgaaaaaaa@4218@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  параметры. Задача ( O C 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaaGimaaaaaaa@364C@  ) формально включается в задачу ( O C p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaaaa @38EE@  ) при p=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGWb GaaGypaiaaicdaaaa@363F@ , r{ r 1 ,, r k }=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGYb GaeyyyIORaaG4EaiaadkhadaWgaaWcbaGaaGymaaqabaGccaaISaGa eSOjGSKaaGilaiaadkhadaWgaaWcbaGaam4AaaqabaGccaaI9bGaaG ypaiaaicdaaaa@40A9@ ; (O C 0 )=(O C 0,0 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa Gaam4taiaadoeadaahaaWcbeqaaiaaicdaaaGccaaIPaGaaGypaiaa iIcacaWGpbGaam4qamaaDaaaleaacaaIWaGaaGilaiaaicdaaeaaca aIWaaaaOGaaGykaaaa@3E9E@ . Соответственно возмущённая параметрическая задача будет иметь вид

                J 0 δ [u]min, G δ [u]= C δ +p, J i δ [u] r i ,i= 1,k ¯ ,uD.(O C p,r δ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2fa cqGHsgIRciGGTbGaaiyAaiaac6gacaaISaGaaGzbVprr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae8NbXF0aaWbaaSqabeaa cqaH0oazaaGccaaIBbGaamyDaiaai2facaaI9aGae8NaXp0aaWbaaS qabeaacqaH0oazaaGccqGHRaWkcaWGWbGaaGilaiaaywW7caWGkbWa a0baaSqaaiaadMgaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2facq GHKjYOcaWGYbWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaaywW7caWG PbGaaGypamaanaaabaGaaGymaiaaiYcacaWGRbaaaiaaiYcacaaMf8 UaamyDaiabgIGiolab=nq8ejaai6cacaaIOaGaam4taiaadoeadaqh aaWcbaGaamiCaiaaiYcacaWGYbaabaGaeqiTdqgaaOGaaGykaaaa@78AE@

Множество всех решений задачи ( O C p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaaaa @38EE@  ) обозначим через U p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGvb Waa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaaaaa@382C@ . Введём также обозначения

            D p,r δ,ϵ {uD: G δ [u] C δ p H ϵ, J i δ [u]ϵ+ r i ,i= 1,k ¯ }, D p,r 0 D p,r 0,0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8enaaDaaa leaacaWGWbGaaGilaiaadkhaaeaacqaH0oazcaaISaaceiGae4x9di paaOGaeyyyIORaaG4EaiaadwhacqGHiiIZcqWFdeprcaaI6aqeeuuD JXwAKbsr4rNCHbacfaGae0xjIaLae8NbXF0aaWbaaSqabeaacqaH0o azaaGccaaIBbGaamyDaiaai2facqGHsislcqWFce=qdaahaaWcbeqa aiabes7aKbaakiabgkHiTiaadchacqqFLicudaWgaaWcbaGaamisaa qabaGccqGHKjYOcqGF1pG8caaISaGaamOsamaaDaaaleaacaWGPbaa baGaeqiTdqgaaOGaaG4waiaadwhacaaIDbGaeyizImQae4x9diVaey 4kaSIaamOCamaaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaamyA aiaai2dadaqdaaqaaiaaigdacaaISaGaam4AaaaacaaI9bGaaGilai aaywW7cqWFdeprdaqhaaWcbaGaamiCaiaaiYcacaWGYbaabaGaaGim aaaakiabggMi6kab=nq8enaaDaaaleaacaWGWbGaaGilaiaadkhaae aacaaIWaGaaGilaiaaicdaaaGccaaIUaaaaa@8DC8@

Определим зависящее от параметров p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGWb aaaa@34BE@ , r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGYb aaaa@34C0@  значение задачи ( O C p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaaaa @38EE@  ) как величину β(p,r) β +0 (p,r) lim ϵ+0 β ϵ (p,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GycaaIOaGaamiCaiaaiYcacaWGYbGaaGykaiabggMi6kabek7aInaa BaaaleaacqGHRaWkcaaIWaaabeaakiaaiIcacaWGWbGaaGilaiaadk hacaaIPaGaeyyyIO7aaubeaeqaleaatuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGabciab=v=aYlabgkziUkabgUcaRiaaicdaae qakeaaciGGSbGaaiyAaiaac2gaaaGaeqOSdi2aaSbaaSqaaiab=v=a YdqabaGccaaIOaGaamiCaiaaiYcacaWGYbGaaGykaaaa@5F60@ , β ϵ (p,r) inf u D p,r 0,ϵ J 0 0 [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GydaWgaaWcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iqGacqWF1pG8aeqaaOGaaGikaiaadchacaaISaGaamOCaiaaiMcacq GHHjIUdaqfqaqabSqaaiaadwhacqGHiiIZiqaacqGFdeprdaqhaaqa aiaadchacaaISaGaamOCaaqaaiaaicdacaaISaGae8x9dipaaaqabO qaaiGacMgacaGGUbGaaiOzaaaacaWGkbWaa0baaSqaaiaaicdaaeaa caaIWaaaaOGaaG4waiaadwhacaaIDbaaaa@5AA1@ , если D p,r 0,ϵ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8enaaDaaa leaacaWGWbGaaGilaiaadkhaaeaacaaIWaGaaGilaGabciab+v=aYd aakiabgcMi5kabgwGigdaa@4914@ ; β ϵ (p,r)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GydaWgaaWcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iqGacqWF1pG8aeqaaOGaaGikaiaadchacaaISaGaamOCaiaaiMcacq GHHjIUcqGHRaWkcqGHEisPaaa@49BD@ , если D p,r 0,ϵ = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8enaaDaaa leaacaWGWbGaaGilaiaadkhaaeaacaaIWaGaaGilaGabciab+v=aYd aakiaai2dacqGHfiIXaaa@4814@ . Как уже отмечалось, имеет место очевидное неравенство β(p,r) β 0 (p,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GycaaIOaGaamiCaiaaiYcacaWGYbGaaGykaiabgsMiJkabek7aInaa BaaaleaacaaIWaaabeaakiaaiIcacaWGWbGaaGilaiaadkhacaaIPa aaaa@41BE@ , где β 0 (p,r) inf u D p,r 0 J 0 0 [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GydaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiCaiaaiYcacaWGYbGa aGykaiabggMi6oaavababeWcbaGaamyDaiabgIGioprr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae83aXt0aa0baaeaacaWG WbGaaGilaiaadkhaaeaacaaIWaaaaaqabOqaaiGacMgacaGGUbGaai OzaaaacaWGkbWaa0baaSqaaiaaicdaaeaacaaIWaaaaOGaaG4waiaa dwhacaaIDbaaaa@55BA@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  классическая нижняя грань задачи ( O C p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaaaa @38EE@  ). Однако специфика задачи ( O C p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaaaa @38EE@  ) (задача является выпуклой с выпуклым функционалом цели и ограниченным D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ebaa@3F0F@ , см. замечание ) такова, что β(p,r)= β 0 (p,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GycaaIOaGaamiCaiaaiYcacaWGYbGaaGykaiaai2dacqaHYoGydaWg aaWcbaGaaGimaaqabaGccaaIOaGaamiCaiaaiYcacaWGYbGaaGykaa aa@40D0@ , причём величина β 0 (p,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GydaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiCaiaaiYcacaWGYbGa aGykaaaa@3A61@  достигается на любом оптимальном элементе u p,r 0 U p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b Waa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaGccqGHiiIZ caWGvbWaa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaaaaa@3E3D@ , если U p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGvb Waa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaaaaa@382C@  не пусто.

Справедливы следующие две важные для применения метода возмущений леммы. Доказательство первой из них можно найти в работе [33, лемма 1.2], второй MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  в [34, теорема 4.3]. Перед их формулировкой напомним о стандартных обозначениях domf{zH:f(z)<+} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGKb Gaam4Baiaad2gacaWGMbGaeyyyIORaaG4EaiaadQhacqGHiiIZcaWG ibGaaGOoaiaayIW7caWGMbGaaGikaiaadQhacaaIPaGaaGipaiabgU caRiabg6HiLkaai2haaaa@4765@  и epif{(z,α)H×:f(z)α} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGLb GaamiCaiaadMgacaWGMbGaeyyyIORaaG4EaiaaiIcacaWG6bGaaGil aiabeg7aHjaaiMcacqGHiiIZcaWGibGaey41aq7efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaI6aGaaGjcVlaa dAgacaaIOaGaamOEaiaaiMcacqGHKjYOcqaHXoqycaaI9baaaa@5826@  для соответственно эффективного множества и надграфика функции f:H{+} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGMb GaaGOoaiaayIW7caWGibGaeyOKH46efv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFDeIucqGHQicYcaaI7bGaey4kaSIaey OhIuQaaGyFaaaa@4A79@ .

 Лемма 4. Функция значений β:H× k {+} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo GycaaI6aGaaGjcVlaadIeacqGHxdaTtuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaam4Aaaaaki abgkziUkab=1risjabgQIiilaaiUhacqGHRaWkcqGHEisPcaaI9baa aa@4F82@  является полунепрерывной снизу и выпуклой.

Лемма 5. (плотность субдифференцируемости). Субдифференциал собственной выпуклой полунепрерывной снизу функции f:H{+} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGMb GaaGOoaiaayIW7caWGibGaeyOKH46efv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFDeIucqGHQicYcaaI7bGaey4kaSIaey OhIuQaaGyFaaaa@4A79@ , где H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGib aaaa@3496@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  гильбертово пространство, не пуст в точках плотного в domf MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGKb Gaam4Baiaad2gacaWGMbaaaa@3783@  множества.

Ниже используется обозначение f(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITdaahaaWcbeqaaiabg6HiLcaakiaadAgacaaIOaGaamOEaiaaiMca aaa@3A26@  для сингулярного (асимптотического) субдифференциала выпуклой полунепрерывной снизу функции f:H{+} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGMb GaaGOoaiaayIW7caWGibGaeyOKH46efv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFDeIucqGHQicYcaaI7bGaey4kaSIaey OhIuQaaGyFaaaa@4A79@  в точке z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b aaaa@34C8@ , H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGib aaaa@3496@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  гильбертово пространство (см., например, [35]), определяемого формулой f(z){λH:{λ,0} N epif (z,f(z))} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITdaahaaWcbeqaaiabg6HiLcaakiaadAgacaaIOaGaamOEaiaaiMca cqGHHjIUcaaI7bGaeq4UdWMaeyicI4SaamisaiaaiQdacaaMi8UaaG 4EaiabeU7aSjaaiYcacaaIWaGaaGyFaiabgIGiolaad6eadaWgaaWc baGaamyzaiaadchacaWGPbGaamOzaaqabaGccaaIOaGaamOEaiaaiY cacaWGMbGaaGikaiaadQhacaaIPaGaaGykaiaai2haaaa@5633@ , где N epif (z,f(z)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGob WaaSbaaSqaaiaadwgacaWGWbGaamyAaiaadAgaaeqaaOGaaGikaiaa dQhacaaISaGaamOzaiaaiIcacaWG6bGaaGykaiaaiMcaaaa@3EF3@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  конус нормалей (в смысле выпуклого анализа) к epif MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGLb GaamiCaiaadMgacaWGMbaaaa@3781@  в точке {z,f(z)} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamOEaiaaiYcacaWGMbGaaGikaiaadQhacaaIPaGaaGyFaaaa@3AD9@ , при этом, как известно, f(z){λH:{λ,1} N epif (z,f(z))} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITcaWGMbGaaGikaiaadQhacaaIPaGaeyyyIORaaG4EaiabeU7aSjab gIGiolaadIeacaaI6aGaaGjcVlaaiUhacqaH7oaBcaaISaGaeyOeI0 IaaGymaiaai2hacqGHiiIZcaWGobWaaSbaaSqaaiaadwgacaWGWbGa amyAaiaadAgaaeqaaOGaaGikaiaadQhacaaISaGaamOzaiaaiIcaca WG6bGaaGykaiaaiMcacaaI9baaaa@5579@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  субдифференциал в смысле выпуклого анализа.

Рассмотрим произвольную точку {p,r}domβ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamiCaiaaiYcacaWGYbGaaGyFaiabgIGiolaadsgacaWGVbGaamyB aiabek7aIbaa@3E6B@  (например, {p,r} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamiCaiaaiYcacaWGYbGaaGyFaaaa@3877@  может быть {0,0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaaGimaiaaiYcacaaIWaGaaGyFaaaa@37FF@  ). В этой точке реализуется хотя бы один из следующих трёх случаев:

1) β(p,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITcqaHYoGycaaIOaGaamiCaiaaiYcacaWGYbGaaGykaiabgcMi5kab gwGigdaa@3E17@ ;

2) β(p,r)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITcqaHYoGycaaIOaGaamiCaiaaiYcacaWGYbGaaGykaiaai2dacqGH fiIXaaa@3D17@ , β(p,r){0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITdaahaaWcbeqaaiabg6HiLcaakiabek7aIjaaiIcacaWGWbGaaGil aiaadkhacaaIPaGaeyiyIKRaaG4EaiaaicdacaaI9baaaa@410C@ ;

3) β(p,r)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITcqaHYoGycaaIOaGaamiCaiaaiYcacaWGYbGaaGykaiaai2dacqGH fiIXaaa@3D17@ , β(p,r)={0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITdaahaaWcbeqaaiabg6HiLcaakiabek7aIjaaiIcacaWGWbGaaGil aiaadkhacaaIPaGaaGypaiaaiUhacaaIWaGaaGyFaaaa@400C@ .

Покажем, что в случаях 1) и 2) предельный переход в соотношениях регуляризованного ПЛ теоремы  приводит к классическому ПЛ в рассматриваемой задаче ( O C p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaaaa @38EE@  ). Случай 3) соответствует ситуации, когда классический ПЛ в задаче ( O C p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaaaa @38EE@  ) не выполняется (см. теорему 1.1 в [33]).

Заметим, прежде всего, что функционал J 0 0 [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacaaIWaaaaOGaaG4waiaadwhacaaIDbaa aa@3909@ , uD, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaa cqWFdeprcaaISaaaaa@4243@  является субдифференцируемым (в смысле выпуклого анализа) в точках D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ebaa@3F0F@  (это следует из [34, теорема 4.2], так как он определён и непрерывен в точках L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGZbaaaaaa@367B@  ). Зафиксируем произвольное управление u p,r 0 U p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b Waa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaGccqGHiiIZ caWGvbWaa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaaaaa@3E3D@ , где U p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGvb Waa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaaaaa@382C@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  множество всех решений задачи ( O C p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaaaa @38EE@  ), которое считаем непустым. Рассмотрим вспомогательную задачу ( ( p ' , r ' )H× k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamiCamaaCaaaleqabaGaam4jaaaakiaaiYcacaWGYbWaaWbaaSqa beaacaWGNaaaaOGaaGykaiabgIGiolaadIeacqGHxdaTtuuDJXwAK1 uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaCaaaleqa baGaam4Aaaaaaaa@49D2@  )

J 0 0 [u]+u u p,r 0 2 min, G 0 [u]= C 0 + p ' , J i 0 [u] r i ' ,i= 1,k ¯ ,uD,( OC ˜ p ' , r ' 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacaaIWaaaaOGaaG4waiaadwhacaaIDbGa ey4kaSseeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaamyDaiabgkHiTi aadwhadaqhaaWcbaGaamiCaiaaiYcacaWGYbaabaGaaGimaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiabgkziUkGac2gacaGGPbGaai OBaiaaiYcacaaMf8+efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuaacqGFge=rdaahaaWcbeqaaiaaicdaaaGccaaIBbGaamyDai aai2facaaI9aGae4NaXp0aaWbaaSqabeaacaaIWaaaaOGaey4kaSIa amiCamaaCaaaleqabaGaam4jaaaakiaaiYcacaaMf8UaamOsamaaDa aaleaacaWGPbaabaGaaGimaaaakiaaiUfacaWG1bGaaGyxaiabgsMi JkaadkhadaqhaaWcbaGaamyAaaqaaiaadEcaaaGccaaISaGaaGzbVl aadMgacaaI9aWaa0aaaeaacaaIXaGaaGilaiaadUgaaaGaaGilaiaa ywW7caWG1bGaeyicI4Sae43aXtKaaGilaiaaiIcadaaiaaqaaiaad+ eacaWGdbaacaGLdmaadaqhaaWcbaGaamiCamaaCaaabeqaaiaadEca aaGaaGilaiaadkhadaahaaqabeaacaWGNaaaaaqaaiaaicdaaaGcca aIPaaaaa@871D@

являющуюся задачей оптимального управления (и одновременно выпуклого программирования) с сильно выпуклым и субдифференцируемым целевым функционалом J 0 0 [u]+u u p,r 0 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacaaIWaaaaOGaaG4waiaadwhacaaIDbGa ey4kaSseeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaamyDaiabgkHiTi aadwhadaqhaaWcbaGaamiCaiaaiYcacaWGYbaabaGaaGimaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaaaaa@481B@ , uD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaa cqWFdepraaa@418D@ , с функцией значений β ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiabek7aIbGaay5adaaaaa@362C@ , для которой имеют место те же свойства, что и для β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo Gyaaa@356A@ . Решения этой задачи (единственные) u ˜ p ' , r ' 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadwhaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaam4j aaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaaGimaaaaaa a@3AAA@  существуют для любых { p ' , r ' }dom β ˜ =domβ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamiCamaaCaaaleqabaGaam4jaaaakiaaiYcacaWGYbWaaWbaaSqa beaacaWGNaaaaOGaaGyFaiabgIGiolaadsgacaWGVbGaamyBamaaGa aabaGaeqOSdigacaGLdmaacaaI9aGaamizaiaad+gacaWGTbGaeqOS digaaa@462A@ , при этом, очевидно, u ˜ p,r 0 = u p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadwhaaiaawoWaamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaa caaIWaaaaOGaaGypaiaadwhadaqhaaWcbaGaamiCaiaaiYcacaWGYb aabaGaaGimaaaaaaa@3E62@ . Её особенностью является то, что при всех { p ' , r ' }domβ=dom β ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamiCamaaCaaaleqabaGaam4jaaaakiaaiYcacaWGYbWaaWbaaSqa beaacaWGNaaaaOGaaGyFaiabgIGiolaadsgacaWGVbGaamyBaiabek 7aIjaai2dacaWGKbGaam4Baiaad2gadaaiaaqaaiabek7aIbGaay5a daaaaa@462A@  имеет место неравенство β ˜ ( p ' , r ' )β( p ' , r ' ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiabek7aIbGaay5adaGaaGikaiaadchadaahaaWcbeqaaiaadEca aaGccaaISaGaamOCamaaCaaaleqabaGaam4jaaaakiaaiMcacqGHLj YScqaHYoGycaaIOaGaamiCamaaCaaaleqabaGaam4jaaaakiaaiYca caWGYbWaaWbaaSqabeaacaWGNaaaaOGaaGykaaaa@452D@ , а в точке p,r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaGada qaaiaadchacaaISaGaamOCaaGaay5Eaiaaw2haaaaa@389C@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  равенство β ˜ (p,r)=β(p,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiabek7aIbGaay5adaGaaGikaiaadchacaaISaGaamOCaiaaiMca caaI9aGaeqOSdiMaaGikaiaadchacaaISaGaamOCaiaaiMcaaaa@40A2@ . При этом epi β ˜ epiβ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGLb GaamiCaiaadMgadaaiaaqaaiabek7aIbGaay5adaGaeyOGIWSaamyz aiaadchacaWGPbGaeqOSdigaaa@3F63@  и, стало быть, любая нормаль (в смысле выпуклого анализа) к надграфику epiβ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGLb GaamiCaiaadMgacqaHYoGyaaa@3837@  в точке {p,r,β(p,r)} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamiCaiaaiYcacaWGYbGaaGilaiabek7aIjaaiIcacaWGWbGaaGil aiaadkhacaaIPaGaaGyFaaaa@3ED5@  будет одновременно нормалью (в том же смысле) в той же точке и к надграфику epi β ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGLb GaamiCaiaadMgadaaiaaqaaiabek7aIbGaay5adaaaaa@38F9@ .

Рассмотрим сначала случай 1), предположив, что β(p,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITcqaHYoGycaaIOaGaamiCaiaaiYcacaWGYbGaaGykaiabgcMi5kab gwGigdaa@3E17@ . По этой причине в задаче ( OC ˜ p,r 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa WaaacaaeaacaWGpbGaam4qaaGaay5adaWaa0baaSqaaiaadchacaaI SaGaamOCaaqaaiaaicdaaaGccaaIPaaaaa@3B1F@  с сильно выпуклым целевым функционалом имеет место β ˜ (p,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITdaaiaaqaaiabek7aIbGaay5adaGaaGikaiaadchacaaISaGaamOC aiaaiMcacqGHGjsUcqGHfiIXaaa@3ED9@ , причём её единственным оптимальным элементом является u p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b Waa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaaaaa@384C@ . В этой ситуации к задаче ( OC ˜ p,r 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa WaaacaaeaacaWGpbGaam4qaaGaay5adaWaa0baaSqaaiaadchacaaI SaGaamOCaaqaaiaaicdaaaGccaaIPaaaaa@3B1F@  может быть применён регуляризованный ПЛ теорем 4.1, 4.2 из [7], а также теоремы 2.4 в [8] (теорема  данной работы, а также теорема 2 из [10] сформулированы для непараметрических задач). Пусть

           L ˜ p ' , r ' δ (u,λ,μ) J 0 δ [u]+u u p,r 0 2,s 2 + λ, G δ [u] C δ p ' H + μ, J δ [u] r ' k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadYeaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaam4j aaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaeqiTdqgaaO GaaGikaiaadwhacaaISaGaeq4UdWMaaGilaiabeY7aTjaaiMcacqGH HjIUcaWGkbWaa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaam yDaiaai2facqGHRaWkrqqr1ngBPrgifHhDYfgaiqaacqWFLicucaWG 1bGaeyOeI0IaamyDamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaaca aIWaaaaOGae8xjIa1aa0baaSqaaiaaikdacaaISaGaam4Caaqaaiaa ikdaaaGccqGHRaWkcqGHPms4cqaH7oaBcaaISaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiuaacqGFge=rdaahaaWcbeqaaiab es7aKbaakiaaiUfacaWG1bGaaGyxaiabgkHiTiab+jq8dnaaCaaale qabaGaeqiTdqgaaOGaeyOeI0IaamiCamaaCaaaleqabaGaam4jaaaa kiabgQYiXpaaBaaaleaacaWGibaabeaakiabgUcaRiabgMYiHlabeY 7aTjaaiYcacaWGkbWaaWbaaSqabeaacqaH0oazaaGccaaIBbGaamyD aiaai2facqGHsislcaWGYbWaaWbaaSqabeaacaWGNaaaaOGaeyOkJe =aaSbaaSqaaiaadUgaaeqaaaaa@8B52@

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  функционал Лагранжа задачи

J 0 δ [u]+u u p,r 0 2 min, G δ [u]= C δ + p ' , J i δ [u] r i ' ,i= 1,k ¯ ,uD,( OC ˜ p ' , r ' δ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2fa cqGHRaWkrqqr1ngBPrgifHhDYfgaiqaacqWFLicucaWG1bGaeyOeI0 IaamyDamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaOGa e8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyOKH4QaciyBaiaacMgaca GGUbGaaGilaiaaywW7tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGqbaiab+zq8hnaaCaaaleqabaGaeqiTdqgaaOGaaG4waiaadw hacaaIDbGaaGypaiab+jq8dnaaCaaaleqabaGaeqiTdqgaaOGaey4k aSIaamiCamaaCaaaleqabaGaam4jaaaakiaaiYcacaaMf8UaamOsam aaDaaaleaacaWGPbaabaGaeqiTdqgaaOGaaG4waiaadwhacaaIDbGa eyizImQaamOCamaaDaaaleaacaWGPbaabaGaam4jaaaakiaaiYcaca aMf8UaamyAaiaai2dadaqdaaqaaiaaigdacaaISaGaam4AaaaacaaI SaGaaGzbVlaadwhacqGHiiIZcqGFdeprcaaISaGaaGikamaaGaaaba Gaam4taiaadoeaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGa am4jaaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaeqiTdq gaaOGaaGykaaaa@8BB4@

где u L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI4SaamitamaaDaaaleaacaaIYaaabaGaam4Caaaaaaa@38F9@ , λH MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH7o aBcqGHiiIZcaWGibaaaa@37CE@ , μ + k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH8o qBcqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGab aiab=1risnaaDaaaleaacqGHRaWkaeaacaWGRbaaaaaa@43B9@ , p ' H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGWb WaaWbaaSqabeaacaWGNaaaaOGaeyicI4Saamisaaaa@37F2@ , r ' k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGYb WaaWbaaSqabeaacaWGNaaaaOGaeyicI48efv3ySLgznfgDOjdaryqr 1ngBPrginfgDObcv39gaiqaacqWFDeIudaahaaWcbeqaaiaadUgaaa aaaa@42FB@ , δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@ . При любых λH MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH7o aBcqGHiiIZcaWGibaaaa@37CE@ , μ + k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH8o qBcqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGab aiab=1risnaaDaaaleaacqGHRaWkaeaacaWGRbaaaaaa@43B9@  и каждом δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3C90@  функция L ˜ p ' , r ' δ (u,λ,μ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadYeaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaam4j aaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaeqiTdqgaaO GaaGikaiaadwhacaaISaGaeq4UdWMaaGilaiabeY7aTjaaiMcaaaa@42AB@  сильно выпукла с постоянной сильной выпуклости, равной единице, и непрерывна как функция переменной u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b aaaa@34C3@  в L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGZbaaaaaa@367B@ , а следовательно, достигает минимума на ограниченном выпуклом и замкнутом в L 2 s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGZbaaaaaa@367B@  множестве D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ebaa@3F0F@ , причём в единственной точке (см., например, [6, гл. 8, § MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGNc aaaa@34F3@  2, теорема 10]), которую обозначим через u ˜ δ [λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadwhaaiaawoWaamaaCaaaleqabaGaeqiTdqgaaOGaaG4waiab eU7aSjaaiYcacqaH8oqBcaaIDbaaaa@3D4D@ .

Двойственной к задаче выпуклого программирования ( OC ˜ p ' , r ' δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaad+eacaWGdbaacaGLdmaadaqhaaWcbaGaamiCamaaCaaabeqa aiaadEcaaaGaaGilaiaadkhadaahaaqabeaacaWGNaaaaaqaaiabes 7aKbaaaaa@3C37@  ) является задача

                             V ˜ p ' , r ' δ (λ,μ) min uD L ˜ p ' , r ' δ (u,λ,μ)sup,λH,μ + k . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadAfaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaam4j aaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaeqiTdqgaaO GaaGikaiabeU7aSjaaiYcacqaH8oqBcaaIPaGaeyyyIO7aaybuaeqa leaacaWG1bGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDOb YtUvgaiqaacqWFdepraeqakeaaciGGTbGaaiyAaiaac6gaaaWaaaca aeaacaWGmbaacaGLdmaadaqhaaWcbaGaamiCamaaCaaabeqaaiaadE caaaGaaGilaiaadkhadaahaaqabeaacaWGNaaaaaqaaiabes7aKbaa kiaaiIcacaWG1bGaaGilaiabeU7aSjaaiYcacqaH8oqBcaaIPaGaey OKH4Qaci4CaiaacwhacaGGWbGaaGilaiaaywW7cqaH7oaBcqGHiiIZ caWGibGaaGilaiaaywW7cqaH8oqBcqGHiiIZtuuDJXwAK1uy0HMmae Xbfv3ySLgzG0uy0HgiuD3BaGqbaiab+1risnaaDaaaleaacqGHRaWk aeaacaWGRbaaaOGaaGOlaaaa@80DD@

Обозначим через { λ p ' , r ' δ,α , μ p ' , r ' δ,α } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdW2aa0baaSqaaiaadchadaahaaqabeaacaWGNaaaaiaaiYca caWGYbWaaWbaaeqabaGaam4jaaaaaeaacqaH0oazcaaISaGaeqySde gaaOGaaGilaiabeY7aTnaaDaaaleaacaWGWbWaaWbaaeqabaGaam4j aaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaeqiTdqMaaG ilaiabeg7aHbaakiaai2haaaa@4AD3@  единственную точку, дающую на H× + k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGib Gaey41aq7efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIudaqhaaWcbaGaey4kaScabaGaam4Aaaaaaaa@4363@  максимум сильно вогнутому функционалу

R ˜ p ' , r ' δ,α (λ,μ) V ˜ p ' , r ' δ (λ,μ)αλ H 2 αμ k 2 ,λH,μ + k ,α + ,δ(0, δ 0 ]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadkfaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaam4j aaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaeqiTdqMaaG ilaiabeg7aHbaakiaaiIcacqaH7oaBcaaISaGaeqiVd0MaaGykaiab ggMi6oaaGaaabaGaamOvaaGaay5adaWaa0baaSqaaiaadchadaahaa qabeaacaWGNaaaaiaaiYcacaWGYbWaaWbaaeqabaGaam4jaaaaaeaa cqaH0oazaaGccaaIOaGaeq4UdWMaaGilaiabeY7aTjaaiMcacqGHsi slcqaHXoqyrqqr1ngBPrgifHhDYfgaiqaacqWFLicucqaH7oaBcqWF LicudaqhaaWcbaGaamisaaqaaiaaikdaaaGccqGHsislcqaHXoqycq WFLicucqaH8oqBcqWFLicudaqhaaWcbaGaam4AaaqaaiaaikdaaaGc caaISaGaaGzbVlabeU7aSjabgIGiolaadIeacaaISaGaaGzbVlabeY 7aTjabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbac faGae4xhHi1aa0baaSqaaiabgUcaRaqaaiaadUgaaaGccaaISaGaaG zbVlabeg7aHjabgIGiolab+1risnaaBaaaleaacqGHRaWkaeqaaOGa aGilaiaaywW7cqaH0oazcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0o azdaWgaaWcbaGaaGimaaqabaGccaaIDbGaaGOlaaaa@9368@

Итак, в случае разрешимости двойственной к ( OC ˜ p ' , r ' 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa WaaacaaeaacaWGpbGaam4qaaGaay5adaWaa0baaSqaaiaadchadaah aaqabeaacaWGNaaaaiaaiYcacaWGYbWaaWbaaeqabaGaam4jaaaaae aacaaIWaaaaOGaaGykaaaa@3CBB@  задачи, т.е. в случае β ˜ ( p ' , r ' ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITdaaiaaqaaiabek7aIbGaay5adaGaaGikaiaadchadaahaaWcbeqa aiaadEcaaaGccaaISaGaamOCamaaCaaaleqabaGaam4jaaaakiaaiM cacqGHGjsUcqGHfiIXaaa@409F@ , в соответствии с утверждениями указанных теорем из-за сильной сходимости соответствующих МПР u ˜ δ j [ λ p ' , r ' δ j ,α( δ j ) , μ p ' , r ' δ j ,α( δ j ) ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadwhaaiaawoWaamaaCaaaleqabaGaeqiTdq2aaWbaaeqabaGa amOAaaaaaaGccaaIBbGaeq4UdW2aa0baaSqaaiaadchadaahaaqabe aacaWGNaaaaiaaiYcacaWGYbWaaWbaaeqabaGaam4jaaaaaeaacqaH 0oazdaahaaqabeaacaWGQbaaaiaaiYcacqaHXoqycaaIOaGaeqiTdq 2aaWbaaeqabaGaamOAaaaacaaIPaaaaOGaaGilaiabeY7aTnaaDaaa leaacaWGWbWaaWbaaeqabaGaam4jaaaacaaISaGaamOCamaaCaaabe qaaiaadEcaaaaabaGaeqiTdq2aaWbaaeqabaGaamOAaaaacaaISaGa eqySdeMaaGikaiabes7aKnaaCaaabeqaaiaadQgaaaGaaGykaaaaki aai2faaaa@5994@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E7@ , ( u ˜ δ [λ,μ]argmin{ L ˜ p ' , r ' δ (u,λ,μ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa WaaacaaeaacaWG1baacaGLdmaadaahaaWcbeqaaiabes7aKbaakiaa iUfacqaH7oaBcaaISaGaeqiVd0MaaGyxaiabggMi6kaadggacaWGYb Gaam4zaiaad2gacaWGPbGaamOBaiaaiUhadaaiaaqaaiaadYeaaiaa woWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaam4jaaaacaaISaGaam OCamaaCaaabeqaaiaadEcaaaaabaGaeqiTdqgaaOGaaGikaiaadwha caaISaGaeq4UdWMaaGilaiabeY7aTjaaiMcaaaa@554B@ , uD}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaa cqWFdeprcaaI9bGaaGykaaaa@4347@  к оптимальному элементу u ˜ p ' , r ' 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadwhaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaam4j aaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaaGimaaaaaa a@3AAA@  задачи ( OC ˜ p ' , r ' 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa WaaacaaeaacaWGpbGaam4qaaGaay5adaWaa0baaSqaaiaadchadaah aaqabeaacaWGNaaaaiaaiYcacaWGYbWaaWbaaeqabaGaam4jaaaaae aacaaIWaaaaOGaaGykaaaa@3CBB@ , а последовательности двойственных переменных MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  к нормальному решению двойственной задачи

                                        { λ p ' , r ' δ j ,α( δ j ) , μ p ' , r ' δ j ,α( δ j ) }{ λ p ' , r ' 0 , μ p ' , r ' 0 },j, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdW2aa0baaSqaaiaadchadaahaaqabeaacaWGNaaaaiaaiYca caWGYbWaaWbaaeqabaGaam4jaaaaaeaacqaH0oazdaahaaqabeaaca WGQbaaaiaaiYcacqaHXoqycaaIOaGaeqiTdq2aaWbaaeqabaGaamOA aaaacaaIPaaaaOGaaGilaiabeY7aTnaaDaaaleaacaWGWbWaaWbaae qabaGaam4jaaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGa eqiTdq2aaWbaaeqabaGaamOAaaaacaaISaGaeqySdeMaaGikaiabes 7aKnaaCaaabeqaaiaadQgaaaGaaGykaaaakiaai2hacqGHsgIRcaaI 7bGaeq4UdW2aa0baaSqaaiaadchadaahaaqabeaacaWGNaaaaiaaiY cacaWGYbWaaWbaaeqabaGaam4jaaaaaeaacaaIWaaaaOGaaGilaiab eY7aTnaaDaaaleaacaWGWbWaaWbaaeqabaGaam4jaaaacaaISaGaam OCamaaCaaabeqaaiaadEcaaaaabaGaaGimaaaakiaai2hacaaISaGa aGzbVlaadQgacqGHsgIRcqGHEisPcaaISaaaaa@6EE9@    (23)

 получаем в пределе при j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyOKH4QaeyOhIukaaa@3816@  неравенство

                                L ˜ p ' , r ' 0 ( u ˜ p ' , r ' 0 , λ p ' , r ' 0 , μ p ' , r ' 0 ) L ˜ p ' , r ' 0 (u, λ p ' , r ' 0 , μ p ' , r ' 0 ),uD, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadYeaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaam4j aaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaaGimaaaaki aaiIcadaaiaaqaaiaadwhaaiaawoWaamaaDaaaleaacaWGWbWaaWba aeqabaGaam4jaaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaaba GaaGimaaaakiaaiYcacqaH7oaBdaqhaaWcbaGaamiCamaaCaaabeqa aiaadEcaaaGaaGilaiaadkhadaahaaqabeaacaWGNaaaaaqaaiaaic daaaGccaaISaGaeqiVd02aa0baaSqaaiaadchadaahaaqabeaacaWG NaaaaiaaiYcacaWGYbWaaWbaaeqabaGaam4jaaaaaeaacaaIWaaaaO GaaGykaiabgsMiJoaaGaaabaGaamitaaGaay5adaWaa0baaSqaaiaa dchadaahaaqabeaacaWGNaaaaiaaiYcacaWGYbWaaWbaaeqabaGaam 4jaaaaaeaacaaIWaaaaOGaaGikaiaadwhacaaISaGaeq4UdW2aa0ba aSqaaiaadchadaahaaqabeaacaWGNaaaaiaaiYcacaWGYbWaaWbaae qabaGaam4jaaaaaeaacaaIWaaaaOGaaGilaiabeY7aTnaaDaaaleaa caWGWbWaaWbaaeqabaGaam4jaaaacaaISaGaamOCamaaCaaabeqaai aadEcaaaaabaGaaGimaaaakiaaiMcacaaISaGaaGzbVlaadwhacqGH iiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=n q8ejaaiYcaaaa@7CD7@     (24)

 и условие дополняющей нежёсткости

                                                                μ p ' , r ' 0 , J 0 [ u ˜ p ' , r ' 0 ] k =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHPm s4cqaH8oqBdaqhaaWcbaGaamiCamaaCaaabeqaaiaadEcaaaGaaGil aiaadkhadaahaaqabeaacaWGNaaaaaqaaiaaicdaaaGccaaISaGaam OsamaaCaaaleqabaGaaGimaaaakiaaiUfadaaiaaqaaiaadwhaaiaa woWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaam4jaaaacaaISaGaam OCamaaCaaabeqaaiaadEcaaaaabaGaaGimaaaakiaai2facqGHQms8 daWgaaWcbaGaam4AaaqabaGccaaI9aGaaGimaiaai6caaaa@4CBD@       (25)

Таким образом, при { p ' , r ' }={p,r} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamiCamaaCaaaleqabaGaam4jaaaakiaaiYcacaWGYbWaaWbaaSqa beaacaWGNaaaaOGaaGyFaiaai2dacaaI7bGaamiCaiaaiYcacaWGYb GaaGyFaaaa@3FB2@ , u ˜ p,r 0 = u p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadwhaaiaawoWaamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaa caaIWaaaaOGaaGypaiaadwhadaqhaaWcbaGaamiCaiaaiYcacaWGYb aabaGaaGimaaaaaaa@3E62@  получаем следующие соотношения классического регулярного ПЛ в задаче ( P p,r 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamiuamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaOGa aGykaaaa@3996@ :

                 L p,r 0 ( u p,r 0 , λ p,r 0 , μ p,r 0 ) L p,r 0 (u, λ p,r 0 , μ p,r 0 ),uD; μ p,r 0 , J 0 [ u p,r 0 ] k =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaGccaaIOaGa amyDamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaOGaaG ilaiabeU7aSnaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaa aOGaaGilaiabeY7aTnaaDaaaleaacaWGWbGaaGilaiaadkhaaeaaca aIWaaaaOGaaGykaiabgsMiJkaadYeadaqhaaWcbaGaamiCaiaaiYca caWGYbaabaGaaGimaaaakiaaiIcacaWG1bGaaGilaiabeU7aSnaaDa aaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaOGaaGilaiabeY7a TnaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaOGaaGykai aaiYcacaaMf8UaamyDaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbaceaGae83aXtKaaG4oaiaaywW7cqGHPms4cqaH8o qBdaqhaaWcbaGaamiCaiaaiYcacaWGYbaabaGaaGimaaaakiaaiYca caWGkbWaaWbaaSqabeaacaaIWaaaaOGaaG4waiaadwhadaqhaaWcba GaamiCaiaaiYcacaWGYbaabaGaaGimaaaakiaai2facqGHQms8daWg aaWcbaGaam4AaaqabaGccaaI9aGaaGimaiaai6caaaa@85E4@

Одновременно в каждой задаче ( P ˜ p ' , r ' 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa WaaacaaeaacaWGqbaacaGLdmaadaqhaaWcbaGaamiCamaaCaaabeqa aiaadEcaaaGaaGilaiaadkhadaahaaqabeaacaWGNaaaaaqaaiaaic daaaGccaaIPaaaaa@3BF4@  с β ˜ ( p ' , r ' ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITdaaiaaqaaiabek7aIbGaay5adaGaaGikaiaadchadaahaaWcbeqa aiaadEcaaaGccaaISaGaamOCamaaCaaaleqabaGaam4jaaaakiaaiM cacqGHGjsUcqGHfiIXaaa@409F@  можно без ограничения общности считать последовательность двойственных переменных { λ p ' , r ' δ j ,α( δ j ) , μ p ' , r ' δ j ,α( δ j ) } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdW2aa0baaSqaaiaadchadaahaaqabeaacaWGNaaaaiaaiYca caWGYbWaaWbaaeqabaGaam4jaaaaaeaacqaH0oazdaahaaqabeaaca WGQbaaaiaaiYcacqaHXoqycaaIOaGaeqiTdq2aaWbaaeqabaGaamOA aaaacaaIPaaaaOGaaGilaiabeY7aTnaaDaaaleaacaWGWbWaaWbaae qabaGaam4jaaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGa eqiTdq2aaWbaaeqabaGaamOAaaaacaaISaGaeqySdeMaaGikaiabes 7aKnaaCaaabeqaaiaadQgaaaGaaGykaaaakiaai2haaaa@552B@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E7@ , такой, что в предельном соотношении (23) элемент { λ p ' , r ' 0 , μ p ' , r ' 0 } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdW2aa0baaSqaaiaadchadaahaaqabeaacaWGNaaaaiaaiYca caWGYbWaaWbaaeqabaGaam4jaaaaaeaacaaIWaaaaOGaaGilaiabeY 7aTnaaDaaaleaacaWGWbWaaWbaaeqabaGaam4jaaaacaaISaGaamOC amaaCaaabeqaaiaadEcaaaaabaGaaGimaaaakiaai2haaaa@4453@  равен (см. замечание 2.4 и теорему 2.4 в [8]) любой точке, доставляющей максимальное значение в двойственной задаче V ˜ p ' , r ' δ (λ,μ)sup MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadAfaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaam4j aaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaeqiTdqgaaO GaaGikaiabeU7aSjaaiYcacqaH8oqBcaaIPaGaeyOKH4Qaci4Caiaa cwhacaGGWbaaaa@45D8@ , {λ,μ}H× + j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdWMaaGilaiabeY7aTjaai2hacqGHiiIZcaWGibGaey41aq7e fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuda qhaaWcbaGaey4kaScabaGaamOAaaaaaaa@4B12@ . Другими словами, так как β ˜ ( p ' , r ' ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHsi slcqGHciITdaaiaaqaaiabek7aIbGaay5adaGaaGikaiaadchadaah aaWcbeqaaiaadEcaaaGccaaISaGaamOCamaaCaaaleqabaGaam4jaa aakiaaiMcaaaa@3E4C@  совпадает с множеством всех точек максимума этой двойственной задачи, то в предельном соотношении (23) элемент { λ p ' , r ' 0 , μ p ' , r ' 0 } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdW2aa0baaSqaaiaadchadaahaaqabeaacaWGNaaaaiaaiYca caWGYbWaaWbaaeqabaGaam4jaaaaaeaacaaIWaaaaOGaaGilaiabeY 7aTnaaDaaaleaacaWGWbWaaWbaaeqabaGaam4jaaaacaaISaGaamOC amaaCaaabeqaaiaadEcaaaaabaGaaGimaaaakiaai2haaaa@4453@  можно считать равным любому фиксированному наперёд выбранному элементу субдифференциала β ˜ ( p ' , r ' ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITdaaiaaqaaiabek7aIbGaay5adaGaaGikaiaadchadaahaaWcbeqa aiaadEcaaaGccaaISaGaamOCamaaCaaaleqabaGaam4jaaaakiaaiM caaaa@3D5F@ , взятому с обратным знаком. Используем это свойство предельного соотношения (23) при анализе случая 2).

Итак, рассматриваем случай 2), когда β(p,r)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITcqaHYoGycaaIOaGaamiCaiaaiYcacaWGYbGaaGykaiaai2dacqGH fiIXaaa@3D17@ , но β(p,r){0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITdaahaaWcbeqaaiabg6HiLcaakiabek7aIjaaiIcacaWGWbGaaGil aiaadkhacaaIPaGaeyiyIKRaaG4EaiaaicdacaaI9baaaa@410C@ . Тогда в соответствии со сказанным выше можем также утверждать, что β ˜ (p,r){0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITdaahaaWcbeqaaiabg6HiLcaakmaaGaaabaGaeqOSdigacaGLdmaa caaIOaGaamiCaiaaiYcacaWGYbGaaGykaiabgcMi5kaaiUhacaaIWa GaaGyFaaaa@41CE@ . В этом случае для перехода к пределу в соотношениях теорем 4.1, 4.2 из [7] поступаем несколько иначе. Воспользуемся двумя важными фактами, связанными со свойствами субдифференцируемости выпуклой полунепрерывной снизу функции значений β ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiabek7aIbGaay5adaaaaa@362C@ . Первый из них заключается в том, что каждая такая функция в гильбертовом пространстве является субдифференцируемой на плотном подмножестве её эффективного множества (см. лемму ). Второй же связан с известным представлением для асимптотического субдифференциала выпуклого полунепрерывного снизу функционала (см., например, [35, утверждение 4C2]), каковым и является функция значений β ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiabek7aIbGaay5adaaaaa@362C@  (см. лемму ):

β ˜ (p,r)=w limsup { p ' , r ' } β ˜ {p,r},t0 t β ˜ ( p ' , r ' ){w lim j t j ζ j : t j 0, ζ j β ˜ ( p j , r j ),{ p j , r j } β ˜ {p,r}}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITdaahaaWcbeqaaiabg6HiLcaakmaaGaaabaGaeqOSdigacaGLdmaa caaIOaGaamiCaiaaiYcacaWGYbGaaGykaiaai2dacaWG3bGaeyOeI0 YaaybuaeqaleaacaaI7bGaamiCamaaCaaabeqaaiaadEcaaaGaaGil aiaadkhadaahaaqabeaacaWGNaaaaiaai2hadaWfGaqaaiabgkziUc qabeaadaaiaaqaaiabek7aIbGaay5adaaaaiaaiUhacaWGWbGaaGil aiaadkhacaaI9bGaaGilaiaaysW7caWG0bGaey4KH8QaaGimaaqabO qaaiGacYgacaGGPbGaaiyBaiaacohacaGG1bGaaiiCaaaacaWG0bGa eyOaIy7aaacaaeaacqaHYoGyaiaawoWaaiaaiIcacaWGWbWaaWbaaS qabeaacaWGNaaaaOGaaGilaiaadkhadaahaaWcbeqaaiaadEcaaaGc caaIPaGaeyyyIORaaG4EaiaadEhacqGHsisldaGfqbqabSqaaiaadQ gacqGHsgIRcqGHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaGaamiD amaaBaaaleaacaWGQbaabeaakiabeA7a6naaBaaaleaacaWGQbaabe aakiaaiQdacaaMe8UaamiDamaaBaaaleaacaWGQbaabeaakiabgozi VkaaicdacaaISaGaaGjbVlabeA7a6naaBaaaleaacaWGQbaabeaaki abgIGiolabgkGi2oaaGaaabaGaeqOSdigacaGLdmaacaaIOaGaamiC amaaCaaaleqabaGaamOAaaaakiaaiYcacaWGYbWaaWbaaSqabeaaca WGQbaaaOGaaGykaiaaiYcacaaMe8UaaG4EaiaadchadaahaaWcbeqa aiaadQgaaaGccaaISaGaamOCamaaCaaaleqabaGaamOAaaaakiaai2 hadaWfGaqaaiabgkziUcWcbeqaamaaGaaabaGaeqOSdigacaGLdmaa aaGccaaI7bGaamiCaiaaiYcacaWGYbGaaGyFaiaai2hacaaISaaaaa@A3A3@

где символ { p ' , r ' } β ˜ {p,r} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamiCamaaCaaaleqabaGaam4jaaaakiaaiYcacaWGYbWaaWbaaSqa beaacaWGNaaaaOGaaGyFamaaxacabaGaeyOKH4kaleqabaWaaacaae aacqaHYoGyaiaawoWaaaaakiaaiUhacaWGWbGaaGilaiaadkhacaaI 9baaaa@438E@  означает, что {{ p ' , r ' }, β ˜ ( p ' , r ' )}{{p,r}, β ˜ (p,r)} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaaG4EaiaadchadaahaaWcbeqaaiaadEcaaaGccaaISaGaamOCamaa CaaaleqabaGaam4jaaaakiaai2hacaaISaWaaacaaeaacqaHYoGyai aawoWaaiaaiIcacaWGWbWaaWbaaSqabeaacaWGNaaaaOGaaGilaiaa dkhadaahaaWcbeqaaiaadEcaaaGccaaIPaGaaGyFaiabgkziUkaaiU hacaaI7bGaamiCaiaaiYcacaWGYbGaaGyFaiaaiYcadaaiaaqaaiab ek7aIbGaay5adaGaaGikaiaadchacaaISaGaamOCaiaaiMcacaaI9b aaaa@54F6@ , символ t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b Gaey4KH8QaaGimaaaa@376B@  означает сходимость к нулю справа, а символ w lim j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG3b GaeyOeI0YaaubeaeqaleaacaWGQbGaeyOKH4QaeyOhIukabeGcbaGa ciiBaiaacMgacaGGTbaaaaaa@3D12@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  слабый предельный переход.

Умножим неравенство (24) на s>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGZb GaaGOpaiaaicdaaaa@3643@ :

                                 L ˜ p ' , r ' 0 ( u p ' , r ' 0 ,s,s λ p ' , r ' 0 ,s μ p ' , r ' 0 ) L ˜ p ' , r ' 0 (u,s,s λ p ' , r ' 0 ,s μ p ' , r ' 0 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadYeaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaam4j aaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaaGimaaaaki aaiIcacaWG1bWaa0baaSqaaiaadchadaahaaqabeaacaWGNaaaaiaa iYcacaWGYbWaaWbaaeqabaGaam4jaaaaaeaacaaIWaaaaOGaaGilai aadohacaaISaGaam4CaiabeU7aSnaaDaaaleaacaWGWbWaaWbaaeqa baGaam4jaaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaaG imaaaakiaaiYcacaWGZbGaeqiVd02aa0baaSqaaiaadchadaahaaqa beaacaWGNaaaaiaaiYcacaWGYbWaaWbaaeqabaGaam4jaaaaaeaaca aIWaaaaOGaaGykaiabgsMiJoaaGaaabaGaamitaaGaay5adaWaa0ba aSqaaiaadchadaahaaqabeaacaWGNaaaaiaaiYcacaWGYbWaaWbaae qabaGaam4jaaaaaeaacaaIWaaaaOGaaGikaiaadwhacaaISaGaam4C aiaaiYcacaWGZbGaeq4UdW2aa0baaSqaaiaadchadaahaaqabeaaca WGNaaaaiaaiYcacaWGYbWaaWbaaeqabaGaam4jaaaaaeaacaaIWaaa aOGaaGilaiaadohacqaH8oqBdaqhaaWcbaGaamiCamaaCaaabeqaai aadEcaaaGaaGilaiaadkhadaahaaqabeaacaWGNaaaaaqaaiaaicda aaGccaaIPaGaaGilaaaa@7349@

      L ˜ p ' , r ' 0 (u,s,λ,μ)s J 0 0 [u]+u u p,r 0 2,s 2 + λ, G 0 [u] C 0 p ' H + μ, J 0 [u] r ' k . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadYeaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaam4j aaaacaaISaGaamOCamaaCaaabeqaaiaadEcaaaaabaGaaGimaaaaki aaiIcacaWG1bGaaGilaiaadohacaaISaGaeq4UdWMaaGilaiabeY7a TjaaiMcacqGHHjIUcaWGZbGaamOsamaaDaaaleaacaaIWaaabaGaaG imaaaakiaaiUfacaWG1bGaaGyxaiabgUcaRebbfv3ySLgzGueE0jxy aGabaiab=vIiqjaadwhacqGHsislcaWG1bWaa0baaSqaaiaadchaca aISaGaamOCaaqaaiaaicdaaaGccqWFLicudaqhaaWcbaGaaGOmaiaa iYcacaWGZbaabaGaaGOmaaaakiabgUcaRmaaamaabaGaeq4UdWMaaG ilamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae4Nb XF0aaWbaaSqabeaacaaIWaaaaOGaaG4waiaadwhacaaIDbGaeyOeI0 Iae4NaXp0aaWbaaSqabeaacaaIWaaaaOGaeyOeI0IaamiCamaaCaaa leqabaGaam4jaaaaaOGaayzkJiaawQYiamaaBaaaleaacaWGibaabe aakiabgUcaRmaaamaabaGaeqiVd0MaaGilaiaadQeadaahaaWcbeqa aiaaicdaaaGccaaIBbGaamyDaiaai2facqGHsislcaWGYbWaaWbaaS qabeaacaWGNaaaaaGccaGLPmIaayPkJaWaaSbaaSqaaiaadUgaaeqa aOGaaGOlaaaa@86BD@        (26)

 Для любой слабой предельной точки вида

                                    { λ ˜ p,r , μ ˜ p,r }=w lim j,{ p ' , r ' } β ˜ {p,r}, s j 0 s j { λ p j , r j 0 , μ p j , r j 0 } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gafq4UdWMbaGaadaWgaaWcbaGaamiCaiaaiYcacaWGYbaabeaakiaa iYcacuaH8oqBgaacamaaBaaaleaacaWGWbGaaGilaiaadkhaaeqaaO GaaGyFaiaai2dacaWG3bGaeyOeI0YaaybuaeqaleaacaWGQbGaeyOK H4QaeyOhIuQaaGilaiaaysW7caaI7bGaamiCamaaCaaabeqaaiaadE caaaGaaGilaiaadkhadaahaaqabeaacaWGNaaaaiaai2hadaWfGaqa aiabgkziUcqabeaadaaiaaqaaiabek7aIbGaay5adaaaaiaaiUhaca WGWbGaaGilaiaadkhacaaI9bGaaGilaiaaysW7caWGZbWaaSbaaeaa caWGQbaabeaacqGHtgYRcaaIWaaabeGcbaGaciiBaiaacMgacaGGTb aaaiaadohadaWgaaWcbaGaamOAaaqabaGccaaI7bGaeq4UdW2aa0ba aSqaaiaadchadaahaaqabeaacaWGQbaaaiaaiYcacaWGYbWaaWbaae qabaGaamOAaaaaaeaacaaIWaaaaOGaaGilaiabeY7aTnaaDaaaleaa caWGWbWaaWbaaeqabaGaamOAaaaacaaISaGaamOCamaaCaaabeqaai aadQgaaaaabaGaaGimaaaakiaai2haaaa@7684@

с { λ p j , r j 0 , μ p j , r j 0 }( β ˜ ( p j , r j )) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdW2aa0baaSqaaiaadchadaahaaqabeaacaWGQbaaaiaaiYca caWGYbWaaWbaaeqabaGaamOAaaaaaeaacaaIWaaaaOGaaGilaiabeY 7aTnaaDaaaleaacaWGWbWaaWbaaeqabaGaamOAaaaacaaISaGaamOC amaaCaaabeqaaiaadQgaaaaabaGaaGimaaaakiaai2hacqGHiiIZca aIOaGaeyOeI0IaeyOaIy7aaacaaeaacqaHYoGyaiaawoWaaiaaiIca caWGWbWaaWbaaSqabeaacaWGQbaaaOGaaGilaiaadkhadaahaaWcbe qaaiaadQgaaaGccaaIPaGaaGykaiabgcMi5kabgwGigdaa@5691@  можем записать после очевидного предельного перехода в (26) при { p ' , r ' }={ p j , r j } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamiCamaaCaaaleqabaGaam4jaaaakiaaiYcacaWGYbWaaWbaaSqa beaacaWGNaaaaOGaaGyFaiaai2dacaaI7bGaamiCamaaCaaaleqaba GaamOAaaaakiaaiYcacaWGYbWaaWbaaSqabeaacaWGQbaaaOGaaGyF aaaa@41FE@ , { λ p ' , r ' 0 , μ p ' , r ' 0 }={ λ p j , r j 0 , μ p j , r j 0 } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4UdW2aa0baaSqaaiaadchadaahaaqabeaacaWGNaaaaiaaiYca caWGYbWaaWbaaeqabaGaam4jaaaaaeaacaaIWaaaaOGaaGilaiabeY 7aTnaaDaaaleaacaWGWbWaaWbaaeqabaGaam4jaaaacaaISaGaamOC amaaCaaabeqaaiaadEcaaaaabaGaaGimaaaakiaai2hacaaI9aGaaG 4EaiabeU7aSnaaDaaaleaacaWGWbWaaWbaaeqabaGaamOAaaaacaaI SaGaamOCamaaCaaabeqaaiaadQgaaaaabaGaaGimaaaakiaaiYcacq aH8oqBdaqhaaWcbaGaamiCamaaCaaabeqaaiaadQgaaaGaaGilaiaa dkhadaahaaqabeaacaWGQbaaaaqaaiaaicdaaaGccaaI9baaaa@56B0@ , s= s j 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGZb GaaGypaiaadohadaWgaaWcbaGaamOAaaqabaGccqGHsgIRcaaIWaaa aa@3A4C@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyOKH4QaeyOhIukaaa@3816@ , неравенство

                                           L p,r 0 ( u p,r 0 ,0, λ ˜ p,r , μ ˜ p,r ) L p,r 0 (u,0, λ ˜ p,r , μ ˜ p,r ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaGccaaIOaGa amyDamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaOGaaG ilaiaaicdacaaISaGafq4UdWMbaGaadaWgaaWcbaGaamiCaiaaiYca caWGYbaabeaakiaaiYcacuaH8oqBgaacamaaBaaaleaacaWGWbGaaG ilaiaadkhaaeqaaOGaaGykaiabgsMiJkaadYeadaqhaaWcbaGaamiC aiaaiYcacaWGYbaabaGaaGimaaaakiaaiIcacaWG1bGaaGilaiaaic dacaaISaGafq4UdWMbaGaadaWgaaWcbaGaamiCaiaaiYcacaWGYbaa beaakiaaiYcacuaH8oqBgaacamaaBaaaleaacaWGWbGaaGilaiaadk haaeqaaOGaaGykaiaai6caaaa@5F77@       (27)

 Заметим, что при этом предельном переходе применялось предельное соотношение u ˜ p j , r j 0 u p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadwhaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaamOA aaaacaaISaGaamOCamaaCaaabeqaaiaadQgaaaaabaGaaGimaaaaki abgkziUkaadwhadaqhaaWcbaGaamiCaiaaiYcacaWGYbaabaGaaGim aaaaaaa@41AA@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyOKH4QaeyOhIukaaa@3816@ , которое является следствием слабой сходимости u ˜ p j , r j 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadwhaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaamOA aaaacaaISaGaamOCamaaCaaabeqaaiaadQgaaaaabaGaaGimaaaaaa a@3B30@  к u p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b Waa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaaaaa@384C@ , числовой сходимости β ˜ ( p j , r j )= J 0 0 [ u ˜ p j , r j 0 ]+ u ˜ p j , r j 0 u p,r 0 2,s 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiabek7aIbGaay5adaGaaGikaiaadchadaahaaWcbeqaaiaadQga aaGccaaISaGaamOCamaaCaaaleqabaGaamOAaaaakiaaiMcacaaI9a GaamOsamaaDaaaleaacaaIWaaabaGaaGimaaaakiaaiUfadaaiaaqa aiaadwhaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaamOAaa aacaaISaGaamOCamaaCaaabeqaaiaadQgaaaaabaGaaGimaaaakiaa i2facqGHRaWkrqqr1ngBPrgifHhDYfgaiqaacqWFLicudaaiaaqaai aadwhaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaamOAaaaa caaISaGaamOCamaaCaaabeqaaiaadQgaaaaabaGaaGimaaaakiabgk HiTiaadwhadaqhaaWcbaGaamiCaiaaiYcacaWGYbaabaGaaGimaaaa kiab=vIiqnaaDaaaleaacaaIYaGaaGilaiaadohaaeaacaaIYaaaaa aa@60F0@  к β ˜ (p,r)= J 0 0 ( u p,r 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiabek7aIbGaay5adaGaaGikaiaadchacaaISaGaamOCaiaaiMca caaI9aGaamOsamaaDaaaleaacaaIWaaabaGaaGimaaaakiaaiIcaca WG1bWaa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaGccaaI Paaaaa@4366@  при j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyOKH4QaeyOhIukaaa@3816@ , субдифференцируемости в точках D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ebaa@3F0F@  и сильной выпуклости функционала J 0 0 []+ u p,r 0 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacaaIWaaaaOGaaG4waiabgwSixlaai2fa cqGHRaWkrqqr1ngBPrgifHhDYfgaiqaacqWFLicucqGHflY1cqGHsi slcaWG1bWaa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaGc cqWFLicudaahaaWcbeqaaiaaikdaaaaaaa@4ABB@ . Одновременно в силу условия дополняющей нежёсткости μ p j , r j ,i 0 ( J i 0 ( u ˜ p j , r j 0 ) r i j )=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH8o qBdaqhaaWcbaGaamiCamaaCaaabeqaaiaadQgaaaGaaGilaiaadkha daahaaqabeaacaWGQbaaaiaaiYcacaWGPbaabaGaaGimaaaakiaaiI cacaWGkbWaa0baaSqaaiaadMgaaeaacaaIWaaaaOGaaGikamaaGaaa baGaamyDaaGaay5adaWaa0baaSqaaiaadchadaahaaqabeaacaWGQb aaaiaaiYcacaWGYbWaaWbaaeqabaGaamOAaaaaaeaacaaIWaaaaOGa aGykaiabgkHiTiaadkhadaqhaaWcbaGaamyAaaqaaiaadQgaaaGcca aIPaGaaGypaiaaicdaaaa@4F3A@ , i= 1,k ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGymaiaaiYcacaWGRbaaaaaa@37F0@ , (см. (25)) в результате предельного перехода в нём при j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyOKH4QaeyOhIukaaa@3816@  и уже применённого при получении (27) предельного соотношения u ˜ p j , r j 0 u p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadwhaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaamOA aaaacaaISaGaamOCamaaCaaabeqaaiaadQgaaaaabaGaaGimaaaaki abgkziUkaadwhadaqhaaWcbaGaamiCaiaaiYcacaWGYbaabaGaaGim aaaaaaa@41AA@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyOKH4QaeyOhIukaaa@3816@  имеем μ ˜ p,r,i ( J i 0 ( u p,r 0 ) r i ' )=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacuaH8o qBgaacamaaBaaaleaacaWGWbGaaGilaiaadkhacaaISaGaamyAaaqa baGccaaIOaGaamOsamaaDaaaleaacaWGPbaabaGaaGimaaaakiaaiI cacaWG1bWaa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaGc caaIPaGaeyOeI0IaamOCamaaDaaaleaacaWGPbaabaGaam4jaaaaki aaiMcacaaI9aGaaGimaaaa@4945@ , i= 1,k ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGymaiaaiYcacaWGRbaaaaaa@37F0@ , что в совокупности с (27) и означает выполнимость нерегулярного невырожденного принципа Лагранжа. При этом мы аппроксимировали решение u p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b Waa0baaSqaaiaadchacaaISaGaamOCaaqaaiaaicdaaaaaaa@384C@  задачи ( O C p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaaaa @38EE@  ) точками u ˜ p j , r j 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadwhaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaamOA aaaacaaISaGaamOCamaaCaaabeqaaiaadQgaaaaabaGaaGimaaaaaa a@3B30@ , доставляющими минимальное значение функциям Лагранжа L ˜ p j , r j 0 (u, λ p j , r j 0 , μ p j , r j 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadYeaaiaawoWaamaaDaaaleaacaWGWbWaaWbaaeqabaGaamOA aaaacaaISaGaamOCamaaCaaabeqaaiaadQgaaaaabaGaaGimaaaaki aaiIcacaWG1bGaaGilaiabeU7aSnaaDaaaleaacaWGWbWaaWbaaeqa baGaamOAaaaacaaISaGaamOCamaaCaaabeqaaiaadQgaaaaabaGaaG imaaaakiaaiYcacqaH8oqBdaqhaaWcbaGaamiCamaaCaaabeqaaiaa dQgaaaGaaGilaiaadkhadaahaaqabeaacaWGQbaaaaqaaiaaicdaaa GccaaIPaaaaa@4DB0@ , uD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaa cqWFdepraaa@418D@ , и учли равенство нулю величины u u p,r 0 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucaWG1bGaeyOeI0IaamyDamaaDaaa leaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaOGae8xjIa1aaWbaaS qabeaacaaIYaaaaaaa@41F9@  при u= u p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaaGypaiaadwhadaqhaaWcbaGaamiCaiaaiYcacaWGYbaabaGaaGim aaaaaaa@3A0D@ . Таким образом, при { p ' , r ' }={p,r} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamiCamaaCaaaleqabaGaam4jaaaakiaaiYcacaWGYbWaaWbaaSqa beaacaWGNaaaaOGaaGyFaiaai2dacaaI7bGaamiCaiaaiYcacaWGYb GaaGyFaaaa@3FB2@ , u ˜ p,r 0 = u p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaaiaa qaaiaadwhaaiaawoWaamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaa caaIWaaaaOGaaGypaiaadwhadaqhaaWcbaGaamiCaiaaiYcacaWGYb aabaGaaGimaaaaaaa@3E62@  получаем соотношения классического нерегулярного ПЛ в задаче (O C p,r 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa Gaam4taiaadoeadaqhaaWcbaGaamiCaiaaiYcacaWGYbaabaGaaGim aaaakiaaiMcaaaa@3A5D@ .

И, наконец, пусть реализуется случай 3), когда β(p,r)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITcqaHYoGycaaIOaGaamiCaiaaiYcacaWGYbGaaGykaiaai2dacqGH fiIXaaa@3D17@ , β(p,r)={0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITdaahaaWcbeqaaiabg6HiLcaakiabek7aIjaaiIcacaWGWbGaaGil aiaadkhacaaIPaGaaGypaiaaiUhacaaIWaGaaGyFaaaa@400C@ . Тогда классический ПЛ в задаче ( O C p,r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaDaaaleaacaWGWbGaaGilaiaadkhaaeaacaaIWaaaaaaa @38EE@  ) не выполняется (подробнее см. в [33, теорема 1.1], соответствующие примеры см. в [30]). 

5. ПРИМЕР РЕГУЛЯРИЗАЦИИ КЛАССИЧЕСКИХ УСЛОВИЙ ОПТИМАЛЬНОСТИ В ЗАДАЧЕ ОПТИМИЗАЦИИ, СВЯЗАННОЙ С ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЕМ ТИПА УРАВНЕНИЯ ПЕРЕНОСА

Естественный переход от начально-краевой задачи к эквивалентному ей функциональному уравнению второго рода вольтеррова типа осуществляется с помощью обращения главной части задачи. Разнообразные конкретные примеры начально-краевых задач (для параболических, гиперболических, интегро-дифференциальных уравнений с частными производными и систем таких уравнений, различных уравнений с запаздывающим аргументом и др.), которые допускают эквивалентное описание с помощью функциональных уравнений вольтеррова типа, можно найти, например, в [26] (см. также обзор в [28]). Из огромного множества разных подобных начально-краевых задач мы для иллюстрации изложенной выше теории выбрали начально-краевую задачу для интегро-дифференциального уравнения типа уравнения переноса. Выпишем основные конструкции, которые участвуют в формулировке регуляризованных КУО (формирующая критерий минимума функционала Лагранжа функция, сопряжённое уравнение и др.). Сформулировать с их помощью соответствующие регуляризованные КУО MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  конкретные реализации теорем , ,  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  уже будет не сложно.

Пусть n=3, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGUb GaaGypaiaaiodacaaISaaaaa@36F6@   Π=[0,1]×[0,1]×[1,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHGo aucaaI9aGaaG4waiaaicdacaaISaGaaGymaiaai2facqGHxdaTcaaI BbGaaGimaiaaiYcacaaIXaGaaGyxaiabgEna0kaaiUfacqGHsislca aIXaGaaGilaiaaigdacaaIDbaaaa@470F@ . Рассмотрим на Π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHGo auaaa@3547@  следующую краевую задачу для линейного интегро-дифференциального уравнения (краевая задача (28) подобна смешанной задаче для простейшего линейного нестационарного интегро-дифференциального уравнения переноса, см., например, [36 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ 38]):

           x/ t 1 + t 3 x/ t 2 =α(t)x(t)+β(t) 1 1 Y(ζ;t)x( t 1 , t 2 ,ζ)dζ+γ(t)u(t),tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITcaWG4bGaaG4laiabgkGi2kaadshadaahaaWcbeqaaiaaigdaaaGc cqGHRaWkcaWG0bWaaWbaaSqabeaacaaIZaaaaOGaeyOaIyRaamiEai aai+cacqGHciITcaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaGypaiab eg7aHjaaiIcacaWG0bGaaGykaiaadIhacaaIOaGaamiDaiaaiMcacq GHRaWkcqaHYoGycaaIOaGaamiDaiaaiMcadaWdXbqabSqaaiabgkHi TiaaigdaaeaacaaIXaaaniabgUIiYdGccaWGzbGaaGikaiabeA7a6j aaiUdacaWG0bGaaGykaiaadIhacaaIOaGaamiDamaaCaaaleqabaGa aGymaaaakiaaiYcacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaGilai abeA7a6jaaiMcacaaMi8UaamizaiabeA7a6jabgUcaRiabeo7aNjaa iIcacaWG0bGaaGykaiaadwhacaaIOaGaamiDaiaaiMcacaaISaGaaG zbVlaadshacqGHiiIZcqqHGoaucaaISaaaaa@77D5@

                                        x(0, t 2 , t 3 )=φ( t 2 , t 3 ),0 t 2 1,1 t 3 1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiaaicdacaaISaGaamiDamaaCaaaleqabaGaaGOmaaaakiaa iYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykaiaai2dacqaHgp GAcaaIOaGaamiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaWG0bWa aWbaaSqabeaacaaIZaaaaOGaaGykaiaaiYcacaaMf8UaaGimaiabgs MiJkaadshadaahaaWcbeqaaiaaikdaaaGccqGHKjYOcaaIXaGaaGil aiaaywW7cqGHsislcaaIXaGaeyizImQaamiDamaaCaaaleqabaGaaG 4maaaakiabgsMiJkaaigdacaaISaaaaa@5865@

                                         x( t 1 ,0, t 3 )= ψ 1 ( t 1 , t 3 ),0 t 1 1,0 t 3 1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiaadshadaahaaWcbeqaaiaaigdaaaGccaaISaGaaGimaiaa iYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykaiaai2dacqaHip qEdaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDamaaCaaaleqabaGa aGymaaaakiaaiYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykai aaiYcacaaMf8UaaGimaiabgsMiJkaadshadaahaaWcbeqaaiaaigda aaGccqGHKjYOcaaIXaGaaGilaiaaywW7caaIWaGaeyizImQaamiDam aaCaaaleqabaGaaG4maaaakiabgsMiJkaaigdacaaISaaaaa@5876@

                                       x( t 1 ,1, t 3 )= ψ 2 ( t 1 , t 3 ),0 t 1 1,1 t 3 0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiaadshadaahaaWcbeqaaiaaigdaaaGccaaISaGaaGymaiaa iYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykaiaai2dacqaHip qEdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDamaaCaaaleqabaGa aGymaaaakiaaiYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykai aaiYcacaaMf8UaaGimaiabgsMiJkaadshadaahaaWcbeqaaiaaigda aaGccqGHKjYOcaaIXaGaaGilaiaaywW7cqGHsislcaaIXaGaeyizIm QaamiDamaaCaaaleqabaGaaG4maaaakiabgsMiJkaaicdacaaISaaa aa@5965@        (28)

 где α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHXo qyaaa@3568@ , β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHYo Gyaaa@356A@ , γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHZo Wzaaa@3570@ , φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHgp GAaaa@3586@ , ψ 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEdaWgaaWcbaGaaGymaaqabaaaaa@367E@ , ψ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEdaWgaaWcbaGaaGOmaaqabaaaaa@367F@ , Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGzb aaaa@34A7@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  фиксированные измеримые по совокупности переменных и ограниченные скалярные функции, u() L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaaSbaaSqaaiaaikda aeqaaaaa@3BAF@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  управление. Левую часть уравнения в (28) понимаем как полную производную функции x() MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiabgwSixlaaiMcaaaa@3875@  по переменной t 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIXaaaaaaa@35AA@  вдоль характеристики дифференциального выражения, стоящего в левой части. Такую производную от x() MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiabgwSixlaaiMcaaaa@3875@  вдоль характеристик l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGSb aaaa@34BA@  будем обозначать x()/l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITcaWG4bGaaGikaiabgwSixlaaiMcacaaIVaGaeyOaIyRaamiBaaaa @3CEB@ . Пусть W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGxb aaaa@34A5@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  класс всех функций x() MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiabgwSixlaaiMcaaaa@3875@  из L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaSbaaSqaaiaaikdaaeqaaaaa@3582@ , абсолютно непрерывных вдоль почти любой характеристики, и таких, что x()/l L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITcaWG4bGaaGikaiabgwSixlaaiMcacaaIVaGaeyOaIyRaamiBaiab gIGiolaadYeadaWgaaWcbaGaaGOmaaqabaaaaa@4028@ . Функцию x() MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiabgwSixlaaiMcaaaa@3875@  из W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGxb aaaa@34A5@  назовём решением задачи (28), отвечающим управлению u(), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaaGikaiabgwSixlaaiMcacaaISaaaaa@3928@  если она почти везде (по линейной мере) на почти каждой l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGSb aaaa@34BA@  в Π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHGo auaaa@3547@  удовлетворяет уравнению в (28) и почти всюду удовлетворяет краевым условиям в (28). Характеристика l=l( t ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGSb GaaGypaiaadYgacaaIOaWaa0aaaeaacaWG0baaaiaaiMcaaaa@38E1@ , проходящая через точку t ¯ ={ t ¯ 1 , t ¯ 2 , t ¯ 3 } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aadaqdaa qaaiaadshaaaGaaGypaiaaiUhadaqdaaqaaiaadshaaaWaaWbaaSqa beaacaaIXaaaaOGaaGilamaanaaabaGaamiDaaaadaahaaWcbeqaai aaikdaaaGccaaISaWaa0aaaeaacaWG0baaamaaCaaaleqabaGaaG4m aaaakiaai2haaaa@3F09@ , задаётся уравнениями { t 1 =ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamiDamaaCaaaleqabaGaaGymaaaakiaai2dacqaH+oaEaaa@3943@ , t 2 = t ¯ 2 + t ¯ 3 (ξ t ¯ 1 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIYaaaaOGaaGypamaanaaabaGaamiDaaaadaah aaWcbeqaaiaaikdaaaGccqGHRaWkdaqdaaqaaiaadshaaaWaaWbaaS qabeaacaaIZaaaaOGaaGikaiabe67a4jabgkHiTmaanaaabaGaamiD aaaadaahaaWcbeqaaiaaigdaaaGccaaIPaaaaa@416A@ , t 3 = t ¯ 3 } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIZaaaaOGaaGypamaanaaabaGaamiDaaaadaah aaWcbeqaaiaaiodaaaGccaaI9baaaa@3982@ , где ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH+o aEaaa@358C@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  параметр. Она обязательно пересекает границу Π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHGo auaaa@3547@  в одной из тех её частей, где или t 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIXaaaaOGaaGypaiaaicdaaaa@3735@ , или t 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIYaaaaOGaaGypaiaaicdaaaa@3736@ , t 3 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIZaaaaOGaaGOpaiaaicdaaaa@3738@ , или t 2 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIYaaaaOGaaGypaiaaigdaaaa@3737@ , t 3 <0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIZaaaaOGaaGipaiaaicdaaaa@3736@ ; значение t 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIXaaaaaaa@35AA@  в соответствующей точке пересечения обозначим через ν( t ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH9o GBcaaIOaWaa0aaaeaacaWG0baaaiaaiMcaaaa@37F0@ . Из краевых условий в задаче (28) следует, что x ν( t ¯ ), t ¯ 2 + t ¯ 3 (ν( t ¯ ) t ¯ 1 ), t ¯ 3 =θ( t ¯ ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b WaaeWaaeaacqaH9oGBcaaIOaWaa0aaaeaacaWG0baaaiaaiMcacaaI SaWaa0aaaeaacaWG0baaamaaCaaaleqabaGaaGOmaaaakiabgUcaRm aanaaabaGaamiDaaaadaahaaWcbeqaaiaaiodaaaGccaaIOaGaeqyV d4MaaGikamaanaaabaGaamiDaaaacaaIPaGaeyOeI0Yaa0aaaeaaca WG0baaamaaCaaaleqabaGaaGymaaaakiaaiMcacaaISaWaa0aaaeaa caWG0baaamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaiaai2 dacqaH4oqCcaaIOaWaa0aaaeaacaWG0baaaiaaiMcacaaISaaaaa@50D4@  где

                        θ( t ¯ ) φ( t ¯ 2 t ¯ 3 t ¯ 1 , t ¯ 3 ), еслиν( t ¯ )=0; ψ 1 ( t ¯ 1 t ¯ 2 / t ¯ 3 , t ¯ 3 ), еслиν( t ¯ )>0, t ¯ 3 >0; ψ 2 ( t ¯ 1 +(1 t ¯ 2 )/ t ¯ 3 , t ¯ 3 ), еслиν( t ¯ )>0, t ¯ 3 <0, t ¯ Π. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH4o qCcaaIOaWaa0aaaeaacaWG0baaaiaaiMcacqGHHjIUdaGabaqaauaa beqadiaaaeaacqaHgpGAcaaIOaWaa0aaaeaacaWG0baaamaaCaaale qabaGaaGOmaaaakiabgkHiTmaanaaabaGaamiDaaaadaahaaWcbeqa aiaaiodaaaGcdaqdaaqaaiaadshaaaWaaWbaaSqabeaacaaIXaaaaO GaaGilamaanaaabaGaamiDaaaadaahaaWcbeqaaiaaiodaaaGccaaI PaGaaGilaaqaaiaabwdbcaqGbrGaae4oeiaabIdbcqaH9oGBcaaIOa Waa0aaaeaacaWG0baaaiaaiMcacaaI9aGaaGimaiaaiUdaaeaacqaH ipqEdaWgaaWcbaGaaGymaaqabaGccaaIOaWaa0aaaeaacaWG0baaam aaCaaaleqabaGaaGymaaaakiabgkHiTmaanaaabaGaamiDaaaadaah aaWcbeqaaiaaikdaaaGccaaIVaWaa0aaaeaacaWG0baaamaaCaaale qabaGaaG4maaaakiaaiYcadaqdaaqaaiaadshaaaWaaWbaaSqabeaa caaIZaaaaOGaaGykaiaaiYcaaeaacaqG1qGaaeyqeiaabUdbcaqG4q GaeqyVd4MaaGikamaanaaabaGaamiDaaaacaaIPaGaaGOpaiaaicda caaISaGaaGjbVpaanaaabaGaamiDaaaadaahaaWcbeqaaiaaiodaaa GccaaI+aGaaGimaiaaiUdaaeaacqaHipqEdaWgaaWcbaGaaGOmaaqa baGccaaIOaWaa0aaaeaacaWG0baaamaaCaaaleqabaGaaGymaaaaki abgUcaRiaaiIcacaaIXaGaeyOeI0Yaa0aaaeaacaWG0baaamaaCaaa leqabaGaaGOmaaaakiaaiMcacaaIVaWaa0aaaeaacaWG0baaamaaCa aaleqabaGaaG4maaaakiaaiYcadaqdaaqaaiaadshaaaWaaWbaaSqa beaacaaIZaaaaOGaaGykaiaaiYcaaeaacaaMi8UaaGjbVlaadwdbca WGbrGaam4oeiaadIdbcaaMe8UaaGjcVlabe27aUjaaiIcadaqdaaqa aiaadshaaaGaaGykaiaai6dacaaIWaGaaGilaiaaysW7daqdaaqaai aadshaaaWaaWbaaSqabeaacaaIZaaaaOGaaGipaiaaicdacaaISaaa aaGaay5EaaGaaGzbVpaanaaabaGaamiDaaaacqGHiiIZcqqHGoauca aIUaaaaa@9E10@          (29)

 Формула

                      x(t)=θ(t)+ Σ 1 [z](t)θ(t)+ ν(t) t 1 z(ξ, t 2 + t 3 (ξ t 1 ), t 3 )dξ,tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiaadshacaaIPaGaaGypaiabeI7aXjaaiIcacaWG0bGaaGyk aiabgUcaRiabfo6atnaaBaaaleaacaaIXaaabeaakiaaiUfacaWG6b GaaGyxaiaaiIcacaWG0bGaaGykaiabggMi6kabeI7aXjaaiIcacaWG 0bGaaGykaiabgUcaRmaapehabeWcbaGaeqyVd4MaaGikaiaadshaca aIPaaabaGaamiDamaaCaaabeqaaiaaigdaaaaaniabgUIiYdGccaWG 6bGaaGikaiabe67a4jaaiYcacaWG0bWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaamiDamaaCaaaleqabaGaaG4maaaakiaaiIcacqaH+oaE cqGHsislcaWG0bWaaWbaaSqabeaacaaIXaaaaOGaaGykaiaaiYcaca WG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykaiaayIW7caWGKbGaeqOV dGNaaGilaiaaywW7caWG0bGaeyicI4SaeuiOdaLaaGilaaaa@710B@        (30)

 устанавливает взаимно однозначное соответствие между классом L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaSbaaSqaaiaaikdaaeqaaaaa@3582@  функций z() MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b GaaGikaiabgwSixlaaiMcaaaa@3877@  и классом удовлетворяющих краевым условиям в (28) функций x() MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiabgwSixlaaiMcaaaa@3875@  из W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGxb aaaa@34A5@ . Задача (28) заменой (30) сводится к эквивалентному функциональному уравнению (1) (это и есть в данном случае процедура обращения главной части краевой задачи (28)), здесь n=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGUb GaaGypaiaaiodaaaa@3640@ , m=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGTb GaaGypaiaaigdaaaa@363D@ , s=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGZb GaaGypaiaaigdaaaa@3643@ , Π=[0,1]×[0,1]×[1,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHGo aucaaI9aGaaG4waiaaicdacaaISaGaaGymaiaai2facqGHxdaTcaaI BbGaaGimaiaaiYcacaaIXaGaaGyxaiabgEna0kaaiUfacqGHsislca aIXaGaaGilaiaaigdacaaIDbaaaa@470F@ ; B[u](t)γ(t)u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGcb GaaG4waiaadwhacaaIDbGaaGikaiaadshacaaIPaGaeyyyIORaeq4S dCMaaGikaiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaaaa@42DA@ , u() L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaaSbaaSqaaiaaikda aeqaaaaa@3BAF@ , tΠ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b GaeyicI4SaeuiOdafaaa@37C4@ ; A[z](t)α(t) Σ 1 [z](t)+β(t) Σ 2 [z](t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGbb GaaG4waiaadQhacaaIDbGaaGikaiaadshacaaIPaGaeyyyIORaeqyS deMaaGikaiaadshacaaIPaGaeu4Odm1aaSbaaSqaaiaaigdaaeqaaO GaaG4waiaadQhacaaIDbGaaGikaiaadshacaaIPaGaey4kaSIaeqOS diMaaGikaiaadshacaaIPaGaeu4Odm1aaSbaaSqaaiaaikdaaeqaaO GaaG4waiaadQhacaaIDbGaaGikaiaadshacaaIPaaaaa@539C@ ,

            Σ 2 [z](t) 1 1 {Y(ζ;t) ν( t 1 , t 2 ,ζ) t 1 z(ξ, t 2 +ζ(ξ t 1 ),ζ)dξ}dζ,z() L 2 ,tΠ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHJo WudaWgaaWcbaGaaGOmaaqabaGccaaIBbGaamOEaiaai2facaaIOaGa amiDaiaaiMcacqGHHjIUdaWdXbqabSqaaiabgkHiTiaaigdaaeaaca aIXaaaniabgUIiYdGccaaI7bGaamywaiaaiIcacqaH2oGEcaaI7aGa amiDaiaaiMcadaWdXbqabSqaaiabe27aUjaaiIcacaWG0bWaaWbaae qabaGaaGymaaaacaaISaGaamiDamaaCaaabeqaaiaaikdaaaGaaGil aiabeA7a6jaaiMcaaeaacaWG0bWaaWbaaeqabaGaaGymaaaaa0Gaey 4kIipakiaadQhacaaIOaGaeqOVdGNaaGilaiaadshadaahaaWcbeqa aiaaikdaaaGccqGHRaWkcqaH2oGEcaaIOaGaeqOVdGNaeyOeI0Iaam iDamaaCaaaleqabaGaaGymaaaakiaaiMcacaaISaGaeqOTdONaaGyk aiaayIW7caWGKbGaeqOVdGNaaGyFaiaayIW7caWGKbGaeqOTdONaaG ilaiaaywW7caWG6bGaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWa aSbaaSqaaiaaikdaaeqaaOGaaGilaiaaywW7caWG0bGaeyicI4Saeu iOdaLaaG4oaaaa@839B@

                                   c(t)α(t)θ(t)+β(t) 1 1 Y(ζ;t)θ( t 1 , t 2 ,ζ)dζ,tΠ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGJb GaaGikaiaadshacaaIPaGaeyyyIORaeqySdeMaaGikaiaadshacaaI PaGaeqiUdeNaaGikaiaadshacaaIPaGaey4kaSIaeqOSdiMaaGikai aadshacaaIPaWaa8qCaeqaleaacqGHsislcaaIXaaabaGaaGymaaqd cqGHRiI8aOGaamywaiaaiIcacqaH2oGEcaaI7aGaamiDaiaaiMcacq aH4oqCcaaIOaGaamiDamaaCaaaleqabaGaaGymaaaakiaaiYcacaWG 0bWaaWbaaSqabeaacaaIYaaaaOGaaGilaiabeA7a6jaaiMcacaaMi8 UaamizaiabeA7a6jaaiYcacaaMf8UaamiDaiabgIGiolabfc6aqjaa i6caaaa@65A8@

 Так как ЛОО A[.]: L 2 L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGbb GaaG4waiaai6cacaaIDbGaaGOoaiaadYeadaWgaaWcbaGaaGOmaaqa baGccqGHsgIRcaWGmbWaaSbaaSqaaiaaikdaaeqaaaaa@3D40@  квазинильпотентен (это простое следствие признака [27, теорема 2]), то указанное уравнение (1), а вместе с ним и краевая задача (28), имеют единственное решение для любого u L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI4SaamitamaaBaaaleaacaaIYaaabeaaaaa@3800@ . Отвечающее управлению u L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI4SaamitamaaBaaaleaacaaIYaaabeaaaaa@3800@  решение x u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b WaaSbaaSqaaiaadwhaaeqaaaaa@35EC@  задачи (28) связано с соответствующим решением z u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG6b WaaSbaaSqaaiaadwhaaeqaaaaa@35EE@  уравнения (1) формулой (30).

Пусть O{{ t 2 , t 3 }:0 t 2 1,1 t 3 1} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb GaeyyyIORaaG4EaiaaiUhacaWG0bWaaWbaaSqabeaacaaIYaaaaOGa aGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaI9bGaaGOoaiaays W7caaIWaGaeyizImQaamiDamaaCaaaleqabaGaaGOmaaaakiabgsMi JkaaigdacaaISaGaaGjbVlabgkHiTiaaigdacqGHKjYOcaWG0bWaaW baaSqabeaacaaIZaaaaOGaeyizImQaaGymaiaai2haaaa@5226@  и заданы: выпуклые функции G 0 (y): MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGhb WaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadMhacaaIPaGaaGOoamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHiLaey OKH4Qae8xhHifaaa@4665@ , G i (y,w):× MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGhb WaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadMhacaaISaGaam4Daiaa iMcacaaI6aWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiq aacqWFDeIucqGHxdaTcqWFDeIucqGHsgIRcqWFDeIuaaa@4B77@ , i= 1,k ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGPb GaaGypamaanaaabaGaaGymaiaaiYcacaWGRbaaaaaa@37F0@ ; функции P(.) L (O) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb GaaGikaiaai6cacaaIPaGaeyicI4SaamitamaaBaaaleaacqGHEisP aeqaaOGaaGikaiaad+eacaaIPaaaaa@3CF0@ , π(.) L 2 (O) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHap aCcaaIOaGaaGOlaiaaiMcacqGHiiIZcaWGmbWaaSbaaSqaaiaaikda aeqaaOGaaGikaiaad+eacaaIPaaaaa@3D23@ . Формулами

                        F 0 [x] G 0 ( Π x(t)dt), F i [x,u] G i ( Π x(t)dt, Π u(t)dt),i= 1,k ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGgb WaaSbaaSqaaiaaicdaaeqaaOGaaG4waiaadIhacaaIDbGaeyyyIORa am4ramaaBaaaleaacaaIWaaabeaakiaaiIcacaaMi8+aa8quaeqale aacqqHGoauaeqaniabgUIiYdGccaWG4bGaaGikaiaadshacaaIPaGa aGjcVlaadsgacaWG0bGaaGykaiaaiYcacaaMf8UaamOramaaBaaale aacaWGPbaabeaakiaaiUfacaWG4bGaaGilaiaadwhacaaIDbGaeyyy IORaam4ramaaBaaaleaacaWGPbaabeaakiaaiIcacaaMi8+aa8quae qaleaacqqHGoauaeqaniabgUIiYdGccaWG4bGaaGikaiaadshacaaI PaGaaGjcVlaadsgacaWG0bGaaGilamaapefabeWcbaGaeuiOdafabe qdcqGHRiI8aOGaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caWGKbGa amiDaiaaiMcacaaISaGaaGzbVlaadMgacaaI9aWaa0aaaeaacaaIXa GaaGilaiaadUgaaaGaaGilaaaa@75DA@

для x()W, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGxbGaaGilaaaa@3B8B@    u() L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaaSbaaSqaaiaaikda aeqaaaaa@3BAF@  определены функционалы. Пусть D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ebaa@3F0F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  выпуклое ограниченное и замкнутое множество пространства L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaSbaaSqaaiaaikdaaeqaaaaa@3582@ . Рассмотрим задачу оптимального управления системой (28) c минимизируемым целевым функционалом F 0 [x] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGgb WaaSbaaSqaaiaaicdaaeqaaOGaaG4waiaadIhacaaIDbaaaa@384D@  при ограничениях

           P( t 2 , t 3 )x(1, t 2 , t 3 )=π( t 2 , t 3 ),{ t 2 , t 3 }O, F 1 [x,u]0,, F k [x,u]0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb GaaGikaiaadshadaahaaWcbeqaaiaaikdaaaGccaaISaGaamiDamaa CaaaleqabaGaaG4maaaakiaaiMcacaWG4bGaaGikaiaaigdacaaISa GaamiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaWG0bWaaWbaaSqa beaacaaIZaaaaOGaaGykaiaai2dacqaHapaCcaaIOaGaamiDamaaCa aaleqabaGaaGOmaaaakiaaiYcacaWG0bWaaWbaaSqabeaacaaIZaaa aOGaaGykaiaaiYcacaaMf8UaaG4EaiaadshadaahaaWcbeqaaiaaik daaaGccaaISaGaamiDamaaCaaaleqabaGaaG4maaaakiaai2hacqGH iiIZcaWGpbGaaGilaiaaywW7caWGgbWaaSbaaSqaaiaaigdaaeqaaO GaaG4waiaadIhacaaISaGaamyDaiaai2facqGHKjYOcaaIWaGaaGil aiaaywW7cqWIMaYscaaISaGaaGzbVlaadAeadaWgaaWcbaGaam4Aaa qabaGccaaIBbGaamiEaiaaiYcacaWG1bGaaGyxaiabgsMiJkaaicda aaa@700E@

и множестве допустимых управлений D. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ejaai6ca aaa@3FC7@  Эту задачу символически запишем в виде

                          F 0 [ x u ]min,P( t 2 , t 3 ) x u (1, t 2 , t 3 )=π( t 2 , t 3 ),{ t 2 , t 3 }O, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGgb WaaSbaaSqaaiaaicdaaeqaaOGaaG4waiaadIhadaWgaaWcbaGaamyD aaqabaGccaaIDbGaeyOKH4QaciyBaiaacMgacaGGUbGaaGilaiaayw W7caWGqbGaaGikaiaadshadaahaaWcbeqaaiaaikdaaaGccaaISaGa amiDamaaCaaaleqabaGaaG4maaaakiaaiMcacaWG4bWaaSbaaSqaai aadwhaaeqaaOGaaGikaiaaigdacaaISaGaamiDamaaCaaaleqabaGa aGOmaaaakiaaiYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykai aai2dacqaHapaCcaaIOaGaamiDamaaCaaaleqabaGaaGOmaaaakiaa iYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykaiaaiYcacaaMf8 UaaG4EaiaadshadaahaaWcbeqaaiaaikdaaaGccaaISaGaamiDamaa CaaaleqabaGaaG4maaaakiaai2hacqGHiiIZcaWGpbGaaGilaaaa@6540@

                                                       F i [ x u ,u]0,i= 1,k ¯ ,uD. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGgb WaaSbaaSqaaiaadMgaaeqaaOGaaG4waiaadIhadaWgaaWcbaGaamyD aaqabaGccaaISaGaamyDaiaai2facqGHKjYOcaaIWaGaaGilaiaayw W7caWGPbGaaGypamaanaaabaGaaGymaiaaiYcacaWGRbaaaiaaiYca caaMf8UaamyDaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbaceaGae83aXtKaaGOlaaaa@54FB@        (31)

Сделав в задаче (31) замену (30), получим следующую эквивалентную задачу оптимизации соответствующей управляемой системы (1):

            W 0 [ z u ]min,P[ z u ]( t 2 , t 3 )=π( t 2 , t 3 )P( t 2 , t 3 )θ(1, t 2 , t 3 ),{ t 2 , t 3 }O, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGxb WaaSbaaSqaaiaaicdaaeqaaOGaaG4waiaadQhadaWgaaWcbaGaamyD aaqabaGccaaIDbGaeyOKH4QaciyBaiaacMgacaGGUbGaaGilaiaayw W7tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=9q8 qjaaiUfacaWG6bWaaSbaaSqaaiaadwhaaeqaaOGaaGyxaiaaiIcaca WG0bWaaWbaaSqabeaacaaIYaaaaOGaaGilaiaadshadaahaaWcbeqa aiaaiodaaaGccaaIPaGaaGypaiabec8aWjaaiIcacaWG0bWaaWbaaS qabeaacaaIYaaaaOGaaGilaiaadshadaahaaWcbeqaaiaaiodaaaGc caaIPaGaeyOeI0IaamiuaiaaiIcacaWG0bWaaWbaaSqabeaacaaIYa aaaOGaaGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPaGaeqiU deNaaGikaiaaigdacaaISaGaamiDamaaCaaaleqabaGaaGOmaaaaki aaiYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykaiaaiYcacaaM f8UaaG4EaiaadshadaahaaWcbeqaaiaaikdaaaGccaaISaGaamiDam aaCaaaleqabaGaaG4maaaakiaai2hacqGHiiIZcaWGpbGaaGilaaaa @7B16@

                                                       W i [ z u ,u]0,i= 1,k ¯ ,uD, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGxb WaaSbaaSqaaiaadMgaaeqaaOGaaG4waiaadQhadaWgaaWcbaGaamyD aaqabaGccaaISaGaamyDaiaai2facqGHKjYOcaaIWaGaaGilaiaayw W7caWGPbGaaGypamaanaaabaGaaGymaiaaiYcacaWGRbaaaiaaiYca caaMf8UaamyDaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbaceaGae83aXtKaaGilaaaa@550C@

 где приняты обозначения: W 0 [z] F 0 [θ+ Σ 1 [z]], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGxb WaaSbaaSqaaiaaicdaaeqaaOGaaG4waiaadQhacaaIDbGaeyyyIORa amOramaaBaaaleaacaaIWaaabeaakiaaiUfacqaH4oqCcqGHRaWkcq qHJoWudaWgaaWcbaGaaGymaaqabaGccaaIBbGaamOEaiaai2facaaI DbGaaGilaaaa@463E@   W i [z,u] F i [θ+ Σ 1 [z],u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGxb WaaSbaaSqaaiaadMgaaeqaaOGaaG4waiaadQhacaaISaGaamyDaiaa i2facqGHHjIUcaWGgbWaaSbaaSqaaiaadMgaaeqaaOGaaG4waiabeI 7aXjabgUcaRiabfo6atnaaBaaaleaacaaIXaaabeaakiaaiUfacaWG 6bGaaGyxaiaaiYcacaWG1bGaaGyxaaaa@4950@   (i= 1,k ¯ ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamyAaiaai2dadaqdaaqaaiaaigdacaaISaGaam4AaaaacaaIPaGa aGilaaaa@3A0B@   P[z]( t 2 , t 3 )P( t 2 , t 3 ) Σ 1 [z](1, t 2 , t 3 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=9q8qjaaiUfa caWG6bGaaGyxaiaaiIcacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaG ilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPaGaeyyyIORaamiu aiaaiIcacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaGilaiaadshada ahaaWcbeqaaiaaiodaaaGccaaIPaGaeu4Odm1aaSbaaSqaaiaaigda aeqaaOGaaG4waiaadQhacaaIDbGaaGikaiaaigdacaaISaGaamiDam aaCaaaleqabaGaaGOmaaaakiaaiYcacaWG0bWaaWbaaSqabeaacaaI ZaaaaOGaaGykaaaa@5D1D@   ({ t 2 , t 3 }O). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaaG4EaiaadshadaahaaWcbeqaaiaaikdaaaGccaaISaGaamiDamaa CaaaleqabaGaaG4maaaakiaai2hacqGHiiIZcaWGpbGaaGykaiaai6 caaaa@3ED9@  Это задача вида (4), здесь J 0 [u] J 0 [ z u ,u] W 0 [ z u ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb WaaSbaaSqaaiaaicdaaeqaaOGaaG4waiaadwhacaaIDbGaeyyyIO7e fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFjeVsda WgaaWcbaGaaGimaaqabaGccaaIBbGaamOEamaaBaaaleaacaWG1baa beaakiaaiYcacaWG1bGaaGyxaiabggMi6kaadEfadaWgaaWcbaGaaG imaaqabaGccaaIBbGaamOEamaaBaaaleaacaWG1baabeaakiaai2fa aaa@5394@ , J i [u] J i [ z u ,u] W i [ z u ,u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb WaaSbaaSqaaiaadMgaaeqaaOGaaG4waiaadwhacaaIDbGaeyyyIO7e fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFjeVsda WgaaWcbaGaamyAaaqabaGccaaIBbGaamOEamaaBaaaleaacaWG1baa beaakiaaiYcacaWG1bGaaGyxaiabggMi6kaadEfadaWgaaWcbaGaam yAaaqabaGccaaIBbGaamOEamaaBaaaleaacaWG1baabeaakiaaiYca caWG1bGaaGyxaaaa@55E0@   (i= 1,k ¯ ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamyAaiaai2dadaqdaaqaaiaaigdacaaISaGaam4AaaaacaaIPaGa aGilaaaa@3A0B@   H= L 2 (O) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGib GaaGypaiaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4taiaa iMcaaaa@3959@ , A[z]P[z] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=bq8bjaaiUfa caWG6bGaaGyxaiabggMi6kab=9q8qjaaiUfacaWG6bGaaGyxaaaa@483D@   (z L 2 (Π)), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamOEaiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGa euiOdaLaaGykaiaaiMcacaaISaaaaa@3D0D@   Cπ( t 2 , t 3 )P( t 2 , t 3 )×θ(1, t 2 , t 3 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=jq8djabggMi 6kabec8aWjaaiIcacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaGilai aadshadaahaaWcbeqaaiaaiodaaaGccaaIPaGaeyOeI0Iaamiuaiaa iIcacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaGilaiaadshadaahaa WcbeqaaiaaiodaaaGccaaIPaGaey41aqRaeqiUdeNaaGikaiaaigda caaISaGaamiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaWG0bWaaW baaSqabeaacaaIZaaaaOGaaGykaaaa@5B6F@   ({ t 2 , t 3 }O), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaaG4EaiaadshadaahaaWcbeqaaiaaikdaaaGccaaISaGaamiDamaa CaaaleqabaGaaG4maaaakiaai2hacqGHiiIZcaWGpbGaaGykaiaaiY caaaa@3ED7@   B[u]0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=XsicjaaiUfa caWG1bGaaGyxaiabggMi6kaaicdaaaa@43AF@   (u L 2 (Π)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamyDaiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGa euiOdaLaaGykaiaaiMcaaaa@3C52@ .

Пусть f{α,β,γ,Y,φ, ψ 1 , ψ 2 ;P,π; G i (i= 0,k ¯ )} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb GaeyyyIORaaG4Eaiabeg7aHjaaiYcacqaHYoGycaaISaGaeq4SdCMa aGilaiaadMfacaaISaGaeqOXdOMaaGilaiabeI8a5naaBaaaleaaca aIXaaabeaakiaaiYcacqaHipqEdaWgaaWcbaGaaGOmaaqabaGccaaI 7aGaamiuaiaaiYcacqaHapaCcaaI7aGaam4ramaaBaaaleaacaWGPb aabeaakiaaysW7caaIOaGaamyAaiaai2dadaqdaaqaaiaaicdacaaI SaGaam4AaaaacaaIPaGaaGyFaaaa@57A6@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  набор входных данных задачи (31), которые могут подвергаться возмущению, и точный набор

                                   f 0 { α 0 , β 0 , γ 0 , Y 0 , φ 0 , ψ 1 0 , ψ 2 0 ; P 0 , π 0 ; G i 0 (i= 0,k ¯ )} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacaaIWaaaaOGaeyyyIORaaG4Eaiabeg7aHnaaCaaa leqabaGaaGimaaaakiaaiYcacqaHYoGydaahaaWcbeqaaiaaicdaaa GccaaISaGaeq4SdC2aaWbaaSqabeaacaaIWaaaaOGaaGilaiaadMfa daahaaWcbeqaaiaaicdaaaGccaaISaGaeqOXdO2aaWbaaSqabeaaca aIWaaaaOGaaGilaiabeI8a5naaDaaaleaacaaIXaaabaGaaGimaaaa kiaaiYcacqaHipqEdaqhaaWcbaGaaGOmaaqaaiaaicdaaaGccaaI7a GaamiuamaaCaaaleqabaGaaGimaaaakiaaiYcacqaHapaCdaahaaWc beqaaiaaicdaaaGccaaI7aGaam4ramaaDaaaleaacaWGPbaabaGaaG imaaaakiaaysW7caaIOaGaamyAaiaai2dadaqdaaqaaiaaicdacaaI SaGaam4AaaaacaaIPaGaaGyFaaaa@615F@

нам не известен, но можно оперировать с приближёнными наборами

                    f δ { α δ , β δ , γ δ , Y δ , φ δ , ψ 1 δ , ψ 2 δ ; P δ , π δ ; G i δ (i= 0,k ¯ )},δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacqaH0oazaaGccqGHHjIUcaaI7bGaeqySde2aaWba aSqabeaacqaH0oazaaGccaaISaGaeqOSdi2aaWbaaSqabeaacqaH0o azaaGccaaISaGaeq4SdC2aaWbaaSqabeaacqaH0oazaaGccaaISaGa amywamaaCaaaleqabaGaeqiTdqgaaOGaaGilaiabeA8aQnaaCaaale qabaGaeqiTdqgaaOGaaGilaiabeI8a5naaDaaaleaacaaIXaaabaGa eqiTdqgaaOGaaGilaiabeI8a5naaDaaaleaacaaIYaaabaGaeqiTdq gaaOGaaG4oaiaadcfadaahaaWcbeqaaiabes7aKbaakiaaiYcacqaH apaCdaahaaWcbeqaaiabes7aKbaakiaaiUdacaWGhbWaa0baaSqaai aadMgaaeaacqaH0oazaaGccaaMe8UaaGikaiaadMgacaaI9aWaa0aa aeaacaaIWaGaaGilaiaadUgaaaGaaGykaiaai2hacaaISaGaaGzbVl abes7aKjabgIGiolaaiIcacaaIWaGaaGilaiabes7aKnaaBaaaleaa caaIWaaabeaakiaai2faaaa@7683@

( δ 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azdaWgaaWcbaGaaGimaaqabaGccaaI+aGaaGimaaaa@37E0@  фиксировано), которые связаны с набором f 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaqGMb WaaWbaaSqabeaacaaIWaaaaaaa@3599@  следующими условиями.

Условие 1. Функции G 0 δ (.): MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGhb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIOaGaaGOlaiaaiMca caaI6aWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacq WFDeIucqGHsgIRcqWFDeIuaaa@47C5@  и G i δ (.,.):× MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGhb Waa0baaSqaaiaadMgaaeaacqaH0oazaaGccaaIOaGaaGOlaiaaiYca caaIUaGaaGykaiaaiQdatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0H giuD3BaGabaiab=1risjabgEna0kab=1risjabgkziUkab=1risbaa @4C93@   (i= 1,k ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamyAaiaai2dadaqdaaqaaiaaigdacaaISaGaam4AaaaacaaIPaaa aa@3955@  выпуклы при любом δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@  и равномерно по δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@  липшицевы на любом ограниченном множестве.

Условие 2. Существует число C>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWHdb GaaGOpaiaaicdaaaa@3617@  такое, что величины α δ α 0 ,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucqaHXoqydaahaaWcbeqaaiabes7a KbaakiabgkHiTiabeg7aHnaaCaaaleqabaGaaGimaaaakiab=vIiqn aaBaaaleaacqGHEisPcaaISaGaaGymaaqabaaaaa@44A2@ , β δ β 0 ,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucqaHYoGydaahaaWcbeqaaiabes7a KbaakiabgkHiTiabek7aInaaCaaaleqabaGaaGimaaaakiab=vIiqn aaBaaaleaacqGHEisPcaaISaGaaGymaaqabaaaaa@44A6@ , γ δ γ 0 ,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucqaHZoWzdaahaaWcbeqaaiabes7a KbaakiabgkHiTiabeo7aNnaaCaaaleqabaGaaGimaaaakiab=vIiqn aaBaaaleaacqGHEisPcaaISaGaaGymaaqabaaaaa@44B2@ Y δ Y 0 ,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucaWGzbWaaWbaaSqabeaacqaH0oaz aaGccqGHsislcaWGzbWaaWbaaSqabeaacaaIWaaaaOGae8xjIa1aaS baaSqaaiabg6HiLkaaiYcacaaIXaaabeaaaaa@4320@ φ δ φ 0 L ([0,1]×[1,1]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucqaHgpGAdaahaaWcbeqaaiabes7a KbaakiabgkHiTiabeA8aQnaaCaaaleqabaGaaGimaaaakiab=vIiqn aaBaaaleaacaWGmbWaaSbaaeaacqGHEisPaeqaaiaaiIcacaaIBbGa aGimaiaaiYcacaaIXaGaaGyxaiabgEna0kaaiUfacqGHsislcaaIXa GaaGilaiaaigdacaaIDbGaaGykaaqabaaaaa@50B7@ π δ π 0 L 2 (O) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucqaHapaCdaahaaWcbeqaaiabes7a KbaakiabgkHiTiabec8aWnaaCaaaleqabaGaaGimaaaakiab=vIiqn aaBaaaleaacaWGmbWaaSbaaeaacaaIYaaabeaacaaIOaGaam4taiaa iMcaaeqaaaaa@45E3@ ψ 1 δ ψ 1 0 L ([0,1]×[0,1]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucqaHipqEdaqhaaWcbaGaaGymaaqa aiabes7aKbaakiabgkHiTiabeI8a5naaDaaaleaacaaIXaaabaGaaG imaaaakiab=vIiqnaaBaaaleaacaWGmbWaaSbaaeaacqGHEisPaeqa aiaaiIcacaaIBbGaaGimaiaaiYcacaaIXaGaaGyxaiabgEna0kaaiU facaaIWaGaaGilaiaaigdacaaIDbGaaGykaaqabaaaaa@5161@ , ψ 2 δ ψ 2 0 L ([0,1]×[1,0]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucqaHipqEdaqhaaWcbaGaaGOmaaqa aiabes7aKbaakiabgkHiTiabeI8a5naaDaaaleaacaaIYaaabaGaaG imaaaakiab=vIiqnaaBaaaleaacaWGmbWaaSbaaeaacqGHEisPaeqa aiaaiIcacaaIBbGaaGimaiaaiYcacaaIXaGaaGyxaiabgEna0kaaiU facqGHsislcaaIXaGaaGilaiaaicdacaaIDbGaaGykaaqabaaaaa@5250@ , P δ P 0 L (O) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaaebbfv3ySL gzGueE0jxyaGaba8aacqWFLicucaWGqbWaaWbaaSqabeaacqaH0oaz aaGccqGHsislcaWGqbWaaWbaaSqabeaacaaIWaaaaOGae8xjIa1aaS baaSqaaiaadYeadaWgaaqaaiabg6HiLcqabaGaaGikaiaad+eacaaI Paaabeaaaaa@44C8@  при любом δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3C90@  не превосходят величины Cδ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWHdb GaeqiTdqgaaa@363A@ .

Условие 3. Существует неубывающая функция N 1 (.): + + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWHob WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaai6cacaaIPaGaaGOoamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaS baaSqaaiabgUcaRaqabaGccqGHsgIRcqWFDeIudaWgaaWcbaGaey4k aScabeaaaaa@4851@  такая, что для каждого l>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWHSb GaaGOpaiaaicdaaaa@3640@  и любого δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3C90@  величины | G 0 δ (y) G 0 0 (y)| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI8b Gaam4ramaaDaaaleaacaaIWaaabaGaeqiTdqgaaOGaaGikaiaadMha caaIPaGaeyOeI0Iaam4ramaaDaaaleaacaaIWaaabaGaaGimaaaaki aaiIcacaWG5bGaaGykaiaaiYhaaaa@4161@ , | G i δ (y,w) G i 0 (y,w)| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI8b Gaam4ramaaDaaaleaacaWGPbaabaGaeqiTdqgaaOGaaGikaiaadMha caaISaGaam4DaiaaiMcacqGHsislcaWGhbWaa0baaSqaaiaadMgaae aacaaIWaaaaOGaaGikaiaadMhacaaISaGaam4DaiaaiMcacaaI8baa aa@452D@   (i= 1,k ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamyAaiaai2dadaqdaaqaaiaaigdacaaISaGaam4AaaaacaaIPaaa aa@3955@  при |y|,|w|l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI8b GaamyEaiaaiYhacaaISaGaaGiFaiaadEhacaaI8bGaeyizImQaaCiB aaaa@3D3B@  не превосходят N 1 (l)δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWHob WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaahYgacaaIPaGaeqiTdqga aa@3990@ .

При любом δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@  имеем управляемую краевую задачу

    x/ t 1 + t 3 x/ t 2 = α δ (t)x(t)+ β δ (t) 1 1 Y δ (ζ;t)x( t 1 , t 2 ,ζ)dζ+ γ δ (t)u(t),tΠ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITcaWG4bGaaG4laiabgkGi2kaadshadaahaaWcbeqaaiaaigdaaaGc cqGHRaWkcaWG0bWaaWbaaSqabeaacaaIZaaaaOGaeyOaIyRaamiEai aai+cacqGHciITcaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaGypaiab eg7aHnaaCaaaleqabaGaeqiTdqgaaOGaaGikaiaadshacaaIPaGaam iEaiaaiIcacaWG0bGaaGykaiabgUcaRiabek7aInaaCaaaleqabaGa eqiTdqgaaOGaaGikaiaadshacaaIPaWaa8qCaeqaleaacqGHsislca aIXaaabaGaaGymaaqdcqGHRiI8aOGaamywamaaCaaaleqabaGaeqiT dqgaaOGaaGikaiabeA7a6jaaiUdacaWG0bGaaGykaiaadIhacaaIOa GaamiDamaaCaaaleqabaGaaGymaaaakiaaiYcacaWG0bWaaWbaaSqa beaacaaIYaaaaOGaaGilaiabeA7a6jaaiMcacaaMi8UaamizaiabeA 7a6jabgUcaRiabeo7aNnaaCaaaleqabaGaeqiTdqgaaOGaaGikaiaa dshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaaiYcacaaMf8Uaam iDaiabgIGiolabfc6aqjaaiUdaaaa@7F54@

                                      x(0, t 2 , t 3 )= φ δ ( t 2 , t 3 ),0 t 2 1,1 t 3 1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiaaicdacaaISaGaamiDamaaCaaaleqabaGaaGOmaaaakiaa iYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykaiaai2dacqaHgp GAdaahaaWcbeqaaiabes7aKbaakiaaiIcacaWG0bWaaWbaaSqabeaa caaIYaaaaOGaaGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPa GaaGilaiaaywW7caaIWaGaeyizImQaamiDamaaCaaaleqabaGaaGOm aaaakiabgsMiJkaaigdacaaISaGaaGzbVlabgkHiTiaaigdacqGHKj YOcaWG0bWaaWbaaSqabeaacaaIZaaaaOGaeyizImQaaGymaiaaiYca aaa@5A41@

                                        x( t 1 ,0, t 3 )= ψ 1 δ ( t 1 , t 3 ),0 t 1 1,0 t 3 1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiaadshadaahaaWcbeqaaiaaigdaaaGccaaISaGaaGimaiaa iYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykaiaai2dacqaHip qEdaqhaaWcbaGaaGymaaqaaiabes7aKbaakiaaiIcacaWG0bWaaWba aSqabeaacaaIXaaaaOGaaGilaiaadshadaahaaWcbeqaaiaaiodaaa GccaaIPaGaaGilaiaaywW7caaIWaGaeyizImQaamiDamaaCaaaleqa baGaaGymaaaakiabgsMiJkaaigdacaaISaGaaGzbVlaaicdacqGHKj YOcaWG0bWaaWbaaSqabeaacaaIZaaaaOGaeyizImQaaGymaiaaiYca aaa@5A1C@

                                       x( t 1 ,1, t 3 )= ψ 2 δ ( t 1 , t 3 ),0 t 1 1,1 t 3 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiaadshadaahaaWcbeqaaiaaigdaaaGccaaISaGaaGymaiaa iYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykaiaai2dacqaHip qEdaqhaaWcbaGaaGOmaaqaaiabes7aKbaakiaaiIcacaWG0bWaaWba aSqabeaacaaIXaaaaOGaaGilaiaadshadaahaaWcbeqaaiaaiodaaa GccaaIPaGaaGilaiaaywW7caaIWaGaeyizImQaamiDamaaCaaaleqa baGaaGymaaaakiabgsMiJkaaigdacaaISaGaaGzbVlabgkHiTiaaig dacqGHKjYOcaWG0bWaaWbaaSqabeaacaaIZaaaaOGaeyizImQaaGim aaaa@5A55@        (32)

 (её решение, отвечающее управлению u L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaeyicI4SaamitamaaBaaaleaacaaIYaaabeaaaaa@3800@ , обозначаем через x u δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b Waa0baaSqaaiaadwhaaeaacqaH0oazaaaaaa@3792@  ), минимизируемый функционал F 0 δ [x] G 0 δ ( Π x(t)dt) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGgb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaamiEaiaai2fa cqGHHjIUcaWGhbWaa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIOa Waa8qeaeqaleaacqqHGoauaeqaniabgUIiYdGccaWG4bGaaGikaiaa dshacaaIPaGaaGjcVlaadsgacaWG0bGaaGykaaaa@4AE4@ , набор ограничений

    P δ ( t 2 , t 3 )x(1, t 2 , t 3 )= π δ ( t 2 , t 3 ),{ t 2 , t 3 }O, F 1 δ [x,u]0,, F k δ [x,u]0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGqb WaaWbaaSqabeaacqaH0oazaaGccaaIOaGaamiDamaaCaaaleqabaGa aGOmaaaakiaaiYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGykai aadIhacaaIOaGaaGymaiaaiYcacaWG0bWaaWbaaSqabeaacaaIYaaa aOGaaGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPaGaaGypai abec8aWnaaCaaaleqabaGaeqiTdqgaaOGaaGikaiaadshadaahaaWc beqaaiaaikdaaaGccaaISaGaamiDamaaCaaaleqabaGaaG4maaaaki aaiMcacaaISaGaaGzbVlaaiUhacaWG0bWaaWbaaSqabeaacaaIYaaa aOGaaGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaI9bGaeyicI4 Saam4taiaaiYcacaaMf8UaamOramaaDaaaleaacaaIXaaabaGaeqiT dqgaaOGaaG4waiaadIhacaaISaGaamyDaiaai2facqGHKjYOcaaIWa GaaGilaiaaywW7cqWIMaYscaaISaGaaGzbVlaadAeadaqhaaWcbaGa am4Aaaqaaiabes7aKbaakiaaiUfacaWG4bGaaGilaiaadwhacaaIDb GaeyizImQaaGimaiaaiYcaaaa@77C8@

где F i δ [x,u] G i δ Π x(t)dt, Π u(t)dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGgb Waa0baaSqaaiaadMgaaeaacqaH0oazaaGccaaIBbGaamiEaiaaiYca caWG1bGaaGyxaiabggMi6kaadEeadaqhaaWcbaGaamyAaaqaaiabes 7aKbaakmaabmaabaWaa8qeaeqaleaacqqHGoauaeqaniabgUIiYdGc caWG4bGaaGikaiaadshacaaIPaGaamizaiaadshacaaISaWaa8qeae qaleaacqqHGoauaeqaniabgUIiYdGccaWG1bGaaGikaiaadshacaaI PaGaamizaiaadshaaiaawIcacaGLPaaaaaa@5512@   (i= 1,k ¯ ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamyAaiaai2dadaqdaaqaaiaaigdacaaISaGaam4AaaaacaaIPaGa aGilaaaa@3A0B@  и задачу оптимального управления

                      F 0 δ [ x u δ ]min, P δ ( t 2 , t 3 ) x u δ (1, t 2 , t 3 )= π δ ( t 2 , t 3 ),{ t 2 , t 3 }O, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGgb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaamiEamaaDaaa leaacaWG1baabaGaeqiTdqgaaOGaaGyxaiabgkziUkGac2gacaGGPb GaaiOBaiaaiYcacaaMf8UaamiuamaaCaaaleqabaGaeqiTdqgaaOGa aGikaiaadshadaahaaWcbeqaaiaaikdaaaGccaaISaGaamiDamaaCa aaleqabaGaaG4maaaakiaaiMcacaWG4bWaa0baaSqaaiaadwhaaeaa cqaH0oazaaGccaaIOaGaaGymaiaaiYcacaWG0bWaaWbaaSqabeaaca aIYaaaaOGaaGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPaGa aGypaiabec8aWnaaCaaaleqabaGaeqiTdqgaaOGaaGikaiaadshada ahaaWcbeqaaiaaikdaaaGccaaISaGaamiDamaaCaaaleqabaGaaG4m aaaakiaaiMcacaaISaGaaGzbVlaaiUhacaWG0bWaaWbaaSqabeaaca aIYaaaaOGaaGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaI9bGa eyicI4Saam4taiaaiYcaaaa@6DEA@

                                                      F i δ [ x u δ ,u]0,i= 1,k ¯ ,uD. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGgb Waa0baaSqaaiaadMgaaeaacqaH0oazaaGccaaIBbGaamiEamaaDaaa leaacaWG1baabaGaeqiTdqgaaOGaaGilaiaadwhacaaIDbGaeyizIm QaaGimaiaaiYcacaaMf8UaamyAaiaai2dadaqdaaqaaiaaigdacaaI SaGaam4AaaaacaaISaGaaGzbVlaadwhacqGHiiIZtuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=nq8ejaai6caaaa@5847@        (33)

 Сделав в задаче (33) соответствующую обращению главной части краевой задачи (32) подстановку x(t)= θ δ (t)+ Σ 1 [z](t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG4b GaaGikaiaadshacaaIPaGaaGypaiabeI7aXnaaCaaaleqabaGaeqiT dqgaaOGaaGikaiaadshacaaIPaGaey4kaSIaeu4Odm1aaSbaaSqaai aaigdaaeqaaOGaaG4waiaadQhacaaIDbGaaGikaiaadshacaaIPaaa aa@465B@ , tΠ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b GaeyicI4SaeuiOdafaaa@37C4@ , где θ δ () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH4o qCdaahaaWcbeqaaiabes7aKbaakiaaiIcacqGHflY1caaIPaaaaa@3B0A@  определяется формулой (29) c заменой φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHgp GAaaa@3586@ , ψ 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEdaWgaaWcbaGaaGymaaqabaaaaa@367E@ , ψ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEdaWgaaWcbaGaaGOmaaqabaaaaa@367F@  на φ δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHgp GAdaahaaWcbeqaaiabes7aKbaaaaa@3758@ , ψ 1 δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEdaqhaaWcbaGaaGymaaqaaiabes7aKbaaaaa@3824@ , ψ 2 δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEdaqhaaWcbaGaaGOmaaqaaiabes7aKbaaaaa@3825@  соответственно, получим эквивалентную задачу оптимизации системы (7), в которой n=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGUb GaaGypaiaaiodaaaa@3640@ , m=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGTb GaaGypaiaaigdaaaa@363D@ , s=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGZb GaaGypaiaaigdaaaa@3643@ , Π=[0,1]×[0,1]×[1,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHGo aucaaI9aGaaG4waiaaicdacaaISaGaaGymaiaai2facqGHxdaTcaaI BbGaaGimaiaaiYcacaaIXaGaaGyxaiabgEna0kaaiUfacqGHsislca aIXaGaaGilaiaaigdacaaIDbaaaa@470F@ ; B δ [u](t) γ δ (t)u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGcb WaaWbaaSqabeaacqaH0oazaaGccaaIBbGaamyDaiaai2facaaIOaGa amiDaiaaiMcacqGHHjIUcqaHZoWzdaahaaWcbeqaaiabes7aKbaaki aaiIcacaWG0bGaaGykaiaadwhacaaIOaGaamiDaiaaiMcaaaa@4692@ , u() L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b GaaGikaiabgwSixlaaiMcacqGHiiIZcaWGmbWaaSbaaSqaaiaaikda aeqaaaaa@3BAF@ , tΠ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b GaeyicI4SaeuiOdafaaa@37C4@ ; A δ [z](t) α δ (t) Σ 1 [z](t)+ β δ (t) Σ 2 δ [z](t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGbb WaaWbaaSqabeaacqaH0oazaaGccaaIBbGaamOEaiaai2facaaIOaGa amiDaiaaiMcacqGHHjIUcqaHXoqydaahaaWcbeqaaiabes7aKbaaki aaiIcacaWG0bGaaGykaiabfo6atnaaBaaaleaacaaIXaaabeaakiaa iUfacaWG6bGaaGyxaiaaiIcacaWG0bGaaGykaiabgUcaRiabek7aIn aaCaaaleqabaGaeqiTdqgaaOGaaGikaiaadshacaaIPaGaeu4Odm1a a0baaSqaaiaaikdaaeaacqaH0oazaaGccaaIBbGaamOEaiaai2faca aIOaGaamiDaiaaiMcacaaISaaaaa@5B8C@  

           Σ 2 δ [z](t) 1 1 { Y δ (ζ;t) ν( t 1 , t 2 ,ζ) t 1 z(ξ, t 2 +ζ(ξ t 1 ),ζ)dξ}dζ,z() L 2 ,tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHJo WudaqhaaWcbaGaaGOmaaqaaiabes7aKbaakiaaiUfacaWG6bGaaGyx aiaaiIcacaWG0bGaaGykaiabggMi6oaapehabeWcbaGaeyOeI0IaaG ymaaqaaiaaigdaa0Gaey4kIipakiaaiUhacaWGzbWaaWbaaSqabeaa cqaH0oazaaGccaaIOaGaeqOTdONaaG4oaiaadshacaaIPaWaa8qCae qaleaacqaH9oGBcaaIOaGaamiDamaaCaaabeqaaiaaigdaaaGaaGil aiaadshadaahaaqabeaacaaIYaaaaiaaiYcacqaH2oGEcaaIPaaaba GaamiDamaaCaaabeqaaiaaigdaaaaaniabgUIiYdGccaWG6bGaaGik aiabe67a4jaaiYcacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaey4kaS IaeqOTdONaaGikaiabe67a4jabgkHiTiaadshadaahaaWcbeqaaiaa igdaaaGccaaIPaGaaGilaiabeA7a6jaaiMcacaaMi8Uaamizaiabe6 7a4jaai2hacaaMi8UaamizaiabeA7a6jaaiYcacaaMf8UaamOEaiaa iIcacqGHflY1caaIPaGaeyicI4SaamitamaaBaaaleaacaaIYaaabe aakiaaiYcacaaMf8UaamiDaiabgIGiolabfc6aqjaaiYcaaaa@870E@

                           c δ (t) α δ (t) θ δ (t)+ β δ (t) 1 1 Y δ (ζ;t) θ δ ( t 1 , t 2 ,ζ)dζ,tΠ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGJb WaaWbaaSqabeaacqaH0oazaaGccaaIOaGaamiDaiaaiMcacqGHHjIU cqaHXoqydaahaaWcbeqaaiabes7aKbaakiaaiIcacaWG0bGaaGykai abeI7aXnaaCaaaleqabaGaeqiTdqgaaOGaaGikaiaadshacaaIPaGa ey4kaSIaeqOSdi2aaWbaaSqabeaacqaH0oazaaGccaaIOaGaamiDai aaiMcadaWdXbqabSqaaiabgkHiTiaaigdaaeaacaaIXaaaniabgUIi YdGccaWGzbWaaWbaaSqabeaacqaH0oazaaGccaaIOaGaeqOTdONaaG 4oaiaadshacaaIPaGaeqiUde3aaWbaaSqabeaacqaH0oazaaGccaaI OaGaamiDamaaCaaaleqabaGaaGymaaaakiaaiYcacaWG0bWaaWbaaS qabeaacaaIYaaaaOGaaGilaiabeA7a6jaaiMcacaaMi8Uaamizaiab eA7a6jaaiYcacaaMf8UaamiDaiabgIGiolabfc6aqjaai6caaaa@70D0@

 Запишем её в виде

    W 0 δ [ z u δ ]min, P δ [ z u δ ]( t 2 , t 3 )= π δ ( t 2 , t 3 ) P δ ( t 2 , t 3 ) θ δ (1, t 2 , t 3 ),{ t 2 , t 3 }O, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGxb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaamOEamaaDaaa leaacaWG1baabaGaeqiTdqgaaOGaaGyxaiabgkziUkGac2gacaGGPb GaaiOBaiaaiYcacaaMf8+efv3ySLgznfgDOfdaryqr1ngBPrginfgD ObYtUvgaiqaacqWFpepudaahaaWcbeqaaiabes7aKbaakiaaiUfaca WG6bWaa0baaSqaaiaadwhaaeaacqaH0oazaaGccaaIDbGaaGikaiaa dshadaahaaWcbeqaaiaaikdaaaGccaaISaGaamiDamaaCaaaleqaba GaaG4maaaakiaaiMcacaaI9aGaeqiWda3aaWbaaSqabeaacqaH0oaz aaGccaaIOaGaamiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaWG0b WaaWbaaSqabeaacaaIZaaaaOGaaGykaiabgkHiTiaadcfadaahaaWc beqaaiabes7aKbaakiaaiIcacaWG0bWaaWbaaSqabeaacaaIYaaaaO GaaGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPaGaeqiUde3a aWbaaSqabeaacqaH0oazaaGccaaIOaGaaGymaiaaiYcacaWG0bWaaW baaSqabeaacaaIYaaaaOGaaGilaiaadshadaahaaWcbeqaaiaaioda aaGccaaIPaGaaGilaiaaywW7caaI7bGaamiDamaaCaaaleqabaGaaG OmaaaakiaaiYcacaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGyFaiab gIGiolaad+eacaaISaaaaa@8778@

                                                     W i δ [ z u δ ,u]0,i= 1,k ¯ ,uD, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGxb Waa0baaSqaaiaadMgaaeaacqaH0oazaaGccaaIBbGaamOEamaaDaaa leaacaWG1baabaGaeqiTdqgaaOGaaGilaiaadwhacaaIDbGaeyizIm QaaGimaiaaiYcacaaMf8UaamyAaiaai2dadaqdaaqaaiaaigdacaaI SaGaam4AaaaacaaISaGaaGzbVlaadwhacqGHiiIZtuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=nq8ejaaiYcaaaa@5858@      (34)

 где  P δ [z]( t 2 , t 3 ) P δ ( t 2 , t 3 ) Σ 1 [z](1, t 2 , t 3 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=9q8qnaaCaaa leqabaGaeqiTdqgaaOGaaG4waiaadQhacaaIDbGaaGikaiaadshada ahaaWcbeqaaiaaikdaaaGccaaISaGaamiDamaaCaaaleqabaGaaG4m aaaakiaaiMcacqGHHjIUcaWGqbWaaWbaaSqabeaacqaH0oazaaGcca aIOaGaamiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaWG0bWaaWba aSqabeaacaaIZaaaaOGaaGykaiabfo6atnaaBaaaleaacaaIXaaabe aakiaaiUfacaWG6bGaaGyxaiaaiIcacaaIXaGaaGilaiaadshadaah aaWcbeqaaiaaikdaaaGccaaISaGaamiDamaaCaaaleqabaGaaG4maa aakiaaiMcaaaa@60D5@ { t 2 , t 3 }O MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaamiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaWG0bWaaWbaaSqa beaacaaIZaaaaOGaaGyFaiabgIGiolaad+eaaaa@3CBC@ W 0 δ [z] F 0 δ [ θ δ + Σ 1 [z]], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGxb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaamOEaiaai2fa cqGHHjIUcaWGgbWaa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBb GaeqiUde3aaWbaaSqabeaacqaH0oazaaGccqGHRaWkcqqHJoWudaWg aaWcbaGaaGymaaqabaGccaaIBbGaamOEaiaai2facaaIDbGaaGilaa aa@4B66@    W i δ [z,u] F i δ [ θ δ + Σ 1 [z],u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGxb Waa0baaSqaaiaadMgaaeaacqaH0oazaaGccaaIBbGaamOEaiaaiYca caWG1bGaaGyxaiabggMi6kaadAeadaqhaaWcbaGaamyAaaqaaiabes 7aKbaakiaaiUfacqaH4oqCdaahaaWcbeqaaiabes7aKbaakiabgUca Riabfo6atnaaBaaaleaacaaIXaaabeaakiaaiUfacaWG6bGaaGyxai aaiYcacaWG1bGaaGyxaaaa@4E78@ .

Задача (34) имеет вид ( O C δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGpb Gaam4qamaaCaaaleqabaGaeqiTdqgaaaaa@3737@  ), здесь J 0 δ [u] J 0 δ [ z u δ ,u] W 0 δ [ z u δ ], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaaicdaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2fa cqGHHjIUtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabai ab=Lq8knaaDaaaleaacaaIWaaabaGaeqiTdqgaaOGaaG4waiaadQha daqhaaWcbaGaamyDaaqaaiabes7aKbaakiaaiYcacaWG1bGaaGyxai abggMi6kaadEfadaqhaaWcbaGaaGimaaqaaiabes7aKbaakiaaiUfa caWG6bWaa0baaSqaaiaadwhaaeaacqaH0oazaaGccaaIDbGaaGilaa aa@5C88@   J i δ [u] J i δ [ z u δ ,u] W i δ [ z u δ ,u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGkb Waa0baaSqaaiaadMgaaeaacqaH0oazaaGccaaIBbGaamyDaiaai2fa cqGHHjIUtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabai ab=Lq8knaaDaaaleaacaWGPbaabaGaeqiTdqgaaOGaaG4waiaadQha daqhaaWcbaGaamyDaaqaaiabes7aKbaakiaaiYcacaWG1bGaaGyxai abggMi6kaadEfadaqhaaWcbaGaamyAaaqaaiabes7aKbaakiaaiUfa caWG6bWaa0baaSqaaiaadwhaaeaacqaH0oazaaGccaaISaGaamyDai aai2faaaa@5E1E@   (i= 1,k ¯ ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamyAaiaai2dadaqdaaqaaiaaigdacaaISaGaam4AaaaacaaIPaGa aGilaaaa@3A0B@   H= L 2 (O), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGib GaaGypaiaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4taiaa iMcacaaISaaaaa@3A0F@   A δ [z] P δ [z] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=bq8bnaaCaaa leqabaGaeqiTdqgaaOGaaG4waiaadQhacaaIDbGaeyyyIORae83dXd 1aaWbaaSqabeaacqaH0oazaaGccaaIBbGaamOEaiaai2faaaa@4BF5@   (z L 2 (Π)), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaamOEaiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGa euiOdaLaaGykaiaaiMcacaaISaaaaa@3D0D@   C δ π δ ( t 2 , t 3 ) P δ ( t 2 , t 3 ) θ δ (1, t 2 , t 3 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=jq8dnaaCaaa leqabaGaeqiTdqgaaOGaeyyyIORaeqiWda3aaWbaaSqabeaacqaH0o azaaGccaaIOaGaamiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaWG 0bWaaWbaaSqabeaacaaIZaaaaOGaaGykaiabgkHiTiaadcfadaahaa Wcbeqaaiabes7aKbaakiaaiIcacaWG0bWaaWbaaSqabeaacaaIYaaa aOGaaGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPaGaeqiUde 3aaWbaaSqabeaacqaH0oazaaGccaaIOaGaaGymaiaaiYcacaWG0bWa aWbaaSqabeaacaaIYaaaaOGaaGilaiaadshadaahaaWcbeqaaiaaio daaaGccaaIPaaaaa@60C8@   ({ t 2 , t 3 }O), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa GaaG4EaiaadshadaahaaWcbeqaaiaaikdaaaGccaaISaGaamiDamaa CaaaleqabaGaaG4maaaakiaai2hacqGHiiIZcaWGpbGaaGykaiaaiY caaaa@3ED7@   B δ [u]0(u L 2 (Π)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=XsicnaaCaaa leqabaGaeqiTdqgaaOGaaG4waiaadwhacaaIDbGaeyyyIORaaGimai aayIW7caaMi8UaaGikaiaadwhacqGHiiIZcaWGmbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiabfc6aqjaaiMcacaaIPaaaaa@5136@ . Воспользовавшись выкладками [10, пример 2], находим, что при сделанных относительно семейства задач (33), δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@ , предположениях семейство задач (34), δ[0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIBbGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3CC3@ , удовлетворяет условиям А MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ Г.

Предположив дополнительно, что функции G i δ ,i= 0,k ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGhb Waa0baaSqaaiaadMgaaeaacqaH0oazaaGccaaISaGaaGjcVlaayIW7 caWGPbGaaGypamaanaaabaGaaGimaiaaiYcacaWGRbaaaiaaiYcaaa a@4013@   δ(0, δ 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH0o azcqGHiiIZcaaIOaGaaGimaiaaiYcacqaH0oazdaWgaaWcbaGaaGim aaqabaGccaaIDbaaaa@3C90@ , гладкие, можем выписать для данного примера критерии (??) и (??) решения задачи (16). Операторы, сопряжённые к Σ 1 : L 2 L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHJo WudaWgaaWcbaGaaGymaaqabaGccaaI6aGaamitamaaBaaaleaacaaI YaaabeaakiabgkziUkaadYeadaWgaaWcbaGaaGOmaaqabaaaaa@3C6B@  и Σ 2 δ : L 2 L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHJo WudaqhaaWcbaGaaGOmaaqaaiabes7aKbaakiaaiQdacaWGmbWaaSba aSqaaiaaikdaaeqaaOGaeyOKH4QaamitamaaBaaaleaacaaIYaaabe aaaaa@3E12@ , имеют вид

                                                Σ 1 * [z](t)= t 1 ρ(t) z(ξ, t 2 + t 3 (ξ t 1 ), t 3 )dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHJo WudaqhaaWcbaGaaGymaaqaaiaaiQcaaaGccaaIBbGaamOEaiaai2fa caaIOaGaamiDaiaaiMcacaaI9aWaa8qCaeqaleaacaWG0bWaaWbaae qabaGaaGymaaaaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaa0Gaey4k IipakiaadQhacaaIOaGaeqOVdGNaaGilaiaadshadaahaaWcbeqaai aaikdaaaGccqGHRaWkcaWG0bWaaWbaaSqabeaacaaIZaaaaOGaaGik aiabe67a4jabgkHiTiaadshadaahaaWcbeqaaiaaigdaaaGccaaIPa GaaGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPaGaaGjcVlaa dsgacqaH+oaEcaaISaaaaa@5C79@

    ( Σ 2 δ ) * [z](t)= 1 1 { t 1 ρ(t) Y δ ( t 3 ;ξ, t 2 + t 3 (ξ t 1 ),ζ)z(ξ, t 2 + t 3 (ξ t 1 ),ζ)dξ}dζ,tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa Gaeu4Odm1aa0baaSqaaiaaikdaaeaacqaH0oazaaGccaaIPaWaaWba aSqabeaacaaIQaaaaOGaaG4waiaadQhacaaIDbGaaGikaiaadshaca aIPaGaaGypamaapehabeWcbaGaeyOeI0IaaGymaaqaaiaaigdaa0Ga ey4kIipakiaaiUhacaaMb8+aa8qCaeqaleaacaWG0bWaaWbaaeqaba GaaGymaaaaaeaacqaHbpGCcaaIOaGaamiDaiaaiMcaa0Gaey4kIipa kiaadMfadaahaaWcbeqaaiabes7aKbaakiaaiIcacaWG0bWaaWbaaS qabeaacaaIZaaaaOGaaG4oaiabe67a4jaaiYcacaWG0bWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaamiDamaaCaaaleqabaGaaG4maaaaki aaiIcacqaH+oaEcqGHsislcaWG0bWaaWbaaSqabeaacaaIXaaaaOGa aGykaiaaiYcacqaH2oGEcaaIPaGaamOEaiaaiIcacqaH+oaEcaaISa GaamiDamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadshadaahaaWc beqaaiaaiodaaaGccaaIOaGaeqOVdGNaeyOeI0IaamiDamaaCaaale qabaGaaGymaaaakiaaiMcacaaISaGaeqOTdONaaGykaiaayIW7caWG KbGaeqOVdGNaaGyFaiaayIW7caWGKbGaeqOTdONaaGilaiaaywW7ca WG0bGaeyicI4SaeuiOdaLaaGilaaaa@88E6@

 здесь ρ( t ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHbp GCcaaIOaWaa0aaaeaacaWG0baaaiaaiMcaaaa@37F8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  значение t 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIXaaaaaaa@35AA@  в точке t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b aaaa@34C2@  пересечения характеристикой l( t ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGSb GaaGikamaanaaabaGaamiDaaaacaaIPaaaaa@3729@  той части границы Π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHGo auaaa@3547@ , где либо t 1 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIXaaaaOGaaGypaiaaigdaaaa@3736@ , либо t 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIYaaaaOGaaGypaiaaicdaaaa@3736@ , t 3 <0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIZaaaaOGaaGipaiaaicdaaaa@3736@ , либо t 2 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIYaaaaOGaaGypaiaaigdaaaa@3737@ , t 3 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIZaaaaOGaaGOpaiaaicdaaaa@3738@ . Положим: η δ ( u ¯ ) Π x u ¯ δ (ζ)dζ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH3o aAdaWgaaWcbaGaeqiTdqgabeaakiaaiIcaceWG1bGbaebacaaIPaGa eyyyIO7aa8qeaeqaleaacqqHGoauaeqaniabgUIiYdGccaWG4bWaa0 baaSqaaiqadwhagaqeaaqaaiabes7aKbaakiaaiIcacqaH2oGEcaaI PaGaamizaiabeA7a6baa@48D6@ ; η( u ¯ ) Π u ¯ (ζ)dζ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaH3o aAcaaIOaGabmyDayaaraGaaGykaiabggMi6oaapebabeWcbaGaeuiO dafabeqdcqGHRiI8aOGabmyDayaaraGaaGikaiabeA7a6jaaiMcaca WGKbGaeqOTdOhaaa@4422@ ; σ( t 2 , t 3 )=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHdp WCcaaIOaGaamiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaWG0bWa aWbaaSqabeaacaaIZaaaaOGaaGykaiaai2dacaaIWaaaaa@3D01@  при 0 t 2 1 t 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIWa GaeyizImQaamiDamaaCaaaleqabaGaaGOmaaaakiabgsMiJkaaigda cqGHsislcaWG0bWaaWbaaSqabeaacaaIZaaaaaaa@3D64@ , t 3 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIZaaaaOGaeyyzImRaaGimaaaa@3836@  и при t 3 t 2 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHsi slcaWG0bWaaWbaaSqabeaacaaIZaaaaOGaeyizImQaamiDamaaCaaa leqabaGaaGOmaaaakiabgsMiJkaaigdaaaa@3CB4@ , t 3 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIZaaaaOGaeyizImQaaGimaaaa@3825@ ; σ( t 2 , t 3 )=1(1 t 2 )/ t 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHdp WCcaaIOaGaamiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaWG0bWa aWbaaSqabeaacaaIZaaaaOGaaGykaiaai2dacaaIXaGaeyOeI0IaaG ikaiaaigdacqGHsislcaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaGyk aiaai+cacaWG0bWaaWbaaSqabeaacaaIZaaaaaaa@4584@  при 1 t 3 t 2 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIXa GaeyOeI0IaamiDamaaCaaaleqabaGaaG4maaaakiabgsMiJkaadsha daahaaWcbeqaaiaaikdaaaGccqGHKjYOcaaIXaaaaa@3D6F@ , t 3 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIZaaaaOGaaGOpaiaaicdaaaa@3738@ ; σ( t 2 , t 3 )=1+ t 2 / t 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHdp WCcaaIOaGaamiDamaaCaaaleqabaGaaGOmaaaakiaaiYcacaWG0bWa aWbaaSqabeaacaaIZaaaaOGaaGykaiaai2dacaaIXaGaey4kaSIaam iDamaaCaaaleqabaGaaGOmaaaakiaai+cacaWG0bWaaWbaaSqabeaa caaIZaaaaaaa@426C@  при 0 t 2 t 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIWa GaeyizImQaamiDamaaCaaaleqabaGaaGOmaaaakiabgsMiJkabgkHi TiaadshadaahaaWcbeqaaiaaiodaaaaaaa@3CA9@ , t 3 <0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG0b WaaWbaaSqabeaacaaIZaaaaOGaaGipaiaaicdaaaa@3736@ . Непосредственно вычисляя, получаем Ω 0 δ [ u ¯ ](t) Σ 1 * [ G 0 δ/ ( η δ ( u ¯ ))](t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHPo WvdaqhaaWcbaGaaGimaaqaaiabes7aKbaakiaaiUfaceWG1bGbaeba caaIDbGaaGikaiaadshacaaIPaGaeyyyIORaeu4Odm1aa0baaSqaai aaigdaaeaacaaIQaaaaOGaaG4waiaadEeadaqhaaWcbaGaaGimaaqa aiabes7aKjaai+caaaGccaaIOaGaeq4TdG2aaSbaaSqaaiabes7aKb qabaGccaaIOaGabmyDayaaraGaaGykaiaaiMcacaaIDbGaaGikaiaa dshacaaIPaGaaGilaaaa@527A@   Ξ 0 δ [ u ¯ ](t)0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHEo awdaqhaaWcbaGaaGimaaqaaiabes7aKbaakiaaiUfaceWG1bGbaeba caaIDbGaaGikaiaadshacaaIPaGaeyyyIORaaGimaiaaiUdaaaa@4067@  

Ω i δ [ u ¯ ](t) Σ 1 * [ G iy δ/ ( η δ ( u ¯ ),η( u ¯ ))](t), Ξ i δ [ u ¯ ](t) G iw δ/ ( η δ ( u ¯ ),η( u ¯ )),i= 1,k ¯ ,tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHPo WvdaqhaaWcbaGaamyAaaqaaiabes7aKbaakiaaiUfaceWG1bGbaeba caaIDbGaaGikaiaadshacaaIPaGaeyyyIORaeu4Odm1aa0baaSqaai aaigdaaeaacaaIQaaaaOGaaG4waiaadEeadaqhaaWcbaGaamyAaiaa dMhaaeaacqaH0oazcaaIVaaaaOGaaGikaiabeE7aOnaaBaaaleaacq aH0oazaeqaaOGaaGikaiqadwhagaqeaiaaiMcacaaISaGaeq4TdGMa aGikaiqadwhagaqeaiaaiMcacaaIPaGaaGyxaiaaiIcacaWG0bGaaG ykaiaaiYcacaaMf8UaeuONdG1aa0baaSqaaiaadMgaaeaacqaH0oaz aaGccaaIBbGabmyDayaaraGaaGyxaiaaiIcacaWG0bGaaGykaiabgg Mi6kaadEeadaqhaaWcbaGaamyAaiaadEhaaeaacqaH0oazcaaIVaaa aOGaaGikaiabeE7aOnaaBaaaleaacqaH0oazaeqaaOGaaGikaiqadw hagaqeaiaaiMcacaaISaGaeq4TdGMaaGikaiqadwhagaqeaiaaiMca caaIPaGaaGilaiaaywW7caWGPbGaaGypamaanaaabaGaaGymaiaaiY cacaWGRbaaaiaaiYcacaaMf8UaamiDaiabgIGiolabfc6aqjaaiYca aaa@8481@

            ( A δ ) * [λ](t)= χ [σ( t 2 , t 3 ),1] ( t 1 ) P δ ( t 2 + t 3 ( t 1 1), t 3 )λ( t 2 + t 3 ( t 1 1), t 3 ),tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaIOa Wefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFaeFq daahaaWcbeqaaiabes7aKbaakiaaiMcadaahaaWcbeqaaiaaiQcaaa GccaaIBbGaeq4UdWMaaGyxaiaaiIcacaWG0bGaaGykaiaai2dacqaH hpWydaWgaaWcbaGaaG4waiabeo8aZjaaiIcacaWG0bWaaWbaaeqaba GaaGOmaaaacaaISaGaamiDamaaCaaabeqaaiaaiodaaaGaaGykaiaa iYcacaaIXaGaaGyxaaqabaGccaaIOaGaamiDamaaCaaaleqabaGaaG ymaaaakiaaiMcacaaMi8UaamiuamaaCaaaleqabaGaeqiTdqgaaOGa aGikaiaadshadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG0bWaaW baaSqabeaacaaIZaaaaOGaaGikaiaadshadaahaaWcbeqaaiaaigda aaGccqGHsislcaaIXaGaaGykaiaaiYcacaWG0bWaaWbaaSqabeaaca aIZaaaaOGaaGykaiaayIW7cqaH7oaBcaaIOaGaamiDamaaCaaaleqa baGaaGOmaaaakiabgUcaRiaadshadaahaaWcbeqaaiaaiodaaaGcca aIOaGaamiDamaaCaaaleqabaGaaGymaaaakiabgkHiTiaaigdacaaI PaGaaGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPaGaaGilai aaywW7caWG0bGaeyicI4SaeuiOdaLaaGilaaaa@83D3@

 т.е. сопряжённое уравнение (20) имеет вид

ψ(t)= Σ 1 * [ α δ ψ](t)+ ( Σ 2 δ ) * [ β δ ψ](t) Σ 1 * [ G 0 δ/ ( η δ ( u ¯ ))](t) Σ 1 * [ i=1 k μ i G iy δ/ ( η δ ( u ¯ ),η( u ¯ ))](t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEcaaIOaGaamiDaiaaiMcacaaI9aGaeu4Odm1aa0baaSqaaiaaigda aeaacaaIQaaaaOGaaG4waiabeg7aHnaaCaaaleqabaGaeqiTdqgaaO GaeqiYdKNaaGyxaiaaiIcacaWG0bGaaGykaiabgUcaRiaaiIcacqqH JoWudaqhaaWcbaGaaGOmaaqaaiabes7aKbaakiaaiMcadaahaaWcbe qaaiaaiQcaaaGccaaIBbGaeqOSdi2aaWbaaSqabeaacqaH0oazaaGc cqaHipqEcaaIDbGaaGikaiaadshacaaIPaGaeyOeI0Iaeu4Odm1aa0 baaSqaaiaaigdaaeaacaaIQaaaaOGaaG4waiaadEeadaqhaaWcbaGa aGimaaqaaiabes7aKjaai+caaaGccaaIOaGaeq4TdG2aaSbaaSqaai abes7aKbqabaGccaaIOaGabmyDayaaraGaaGykaiaaiMcacaaIDbGa aGikaiaadshacaaIPaGaeyOeI0Iaeu4Odm1aa0baaSqaaiaaigdaae aacaaIQaaaaOGaaG4wamaaqahabeWcbaGaamyAaiaai2dacaaIXaaa baGaam4AaaqdcqGHris5aOGaeqiVd02aaSbaaSqaaiaadMgaaeqaaO Gaam4ramaaDaaaleaacaWGPbGaamyEaaqaaiabes7aKjaai+caaaGc caaIOaGaeq4TdG2aaSbaaSqaaiabes7aKbqabaGccaaIOaGabmyDay aaraGaaGykaiaaiYcacqaH3oaAcaaIOaGabmyDayaaraGaaGykaiaa iMcacaaIDbGaaGikaiaadshacaaIPaGaeyOeI0caaa@8D19@

                         χ [σ( t 2 , t 3 ),1] ( t 1 ) P δ ( t 2 + t 3 ( t 1 1), t 3 )λ( t 2 + t 3 ( t 1 1), t 3 ),tΠ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHsi slcqaHhpWydaWgaaWcbaGaaG4waiabeo8aZjaaiIcacaWG0bWaaWba aeqabaGaaGOmaaaacaaISaGaamiDamaaCaaabeqaaiaaiodaaaGaaG ykaiaaiYcacaaIXaGaaGyxaaqabaGccaaIOaGaamiDamaaCaaaleqa baGaaGymaaaakiaaiMcacaaMi8UaamiuamaaCaaaleqabaGaeqiTdq gaaOGaaGikaiaadshadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG 0bWaaWbaaSqabeaacaaIZaaaaOGaaGikaiaadshadaahaaWcbeqaai aaigdaaaGccqGHsislcaaIXaGaaGykaiaaiYcacaWG0bWaaWbaaSqa beaacaaIZaaaaOGaaGykaiabeU7aSjaaiIcacaWG0bWaaWbaaSqabe aacaaIYaaaaOGaey4kaSIaamiDamaaCaaaleqabaGaaG4maaaakiaa iIcacaWG0bWaaWbaaSqabeaacaaIXaaaaOGaeyOeI0IaaGymaiaaiM cacaaISaGaamiDamaaCaaaleqabaGaaG4maaaakiaaiMcacaaISaGa aGzbVlaadshacqGHiiIZcqqHGoaucaaIUaaaaa@6D20@           (35)

 Оно является функциональным (интегральным) уравнением вольтеррова типа, а функция Ψ δ [ u ¯ ,λ,μ], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHOo qwdaahaaWcbeqaaiabes7aKbaakiaaiUfaceWG1bGbaebacaaISaGa eq4UdWMaaGilaiabeY7aTjaai2facaaISaaaaa@3F9E@  формирующая критерии (??) и (??), которым удовлетворяет решение u δ,ε [λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazcaaISaGaeqyTdugaaOGaaG4waiabeU7a SjaaiYcacqaH8oqBcaaIDbaaaa@3EE8@  задачи (16), задаётся формулой

                  Ψ δ [ u ¯ ,λ,μ](t) γ δ (t) ψ δ [ u ¯ ,λ,μ](t)+ i=1 k μ i G iw δ/ ( η δ ( u ¯ ),η( u ¯ )),tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqqHOo qwdaahaaWcbeqaaiabes7aKbaakiaaiUfaceWG1bGbaebacaaISaGa eq4UdWMaaGilaiabeY7aTjaai2facaaIOaGaamiDaiaaiMcacqGHHj IUcqaHZoWzdaahaaWcbeqaaiabes7aKbaakiaaiIcacaWG0bGaaGyk aiabeI8a5naaCaaaleqabaGaeqiTdqgaaOGaaG4waiqadwhagaqeai aaiYcacqaH7oaBcaaISaGaeqiVd0MaaGyxaiaaiIcacaWG0bGaaGyk aiabgUcaRmaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaam4Aaa qdcqGHris5aOGaeqiVd02aaSbaaSqaaiaadMgaaeqaaOGaam4ramaa DaaaleaacaWGPbGaam4Daaqaaiabes7aKjaai+caaaGccaaIOaGaeq 4TdG2aaSbaaSqaaiabes7aKbqabaGccaaIOaGabmyDayaaraGaaGyk aiaaiYcacqaH3oaAcaaIOaGabmyDayaaraGaaGykaiaaiMcacaaISa GaaGzbVlaadshacqGHiiIZcqqHGoaucaaISaaaaa@7891@

где ψ δ [ u ¯ ,λ,μ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEdaahaaWcbeqaaiabes7aKbaakiaaiUfaceWG1bGbaebacaaISaGa eq4UdWMaaGilaiabeY7aTjaai2faaaa@3F27@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  решение уравнения (35). Единственное в L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb WaaSbaaSqaaiaaikdaaeqaaaaa@3582@  решение этого уравнения принадлежит классу W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGxb aaaa@34A5@ . Уравнение (35) эквивалентно краевой задаче

        ψ/ t 1 + t 3 ψ/ t 2 = α δ (t)ψ(t) 1 1 Y( t 3 ; t 1 , t 2 ,ζ) β δ ( t 1 , t 2 ,ζ)ψ( t 1 , t 2 ,ζ)dζ+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHci ITcqaHipqEcaaIVaGaeyOaIyRaamiDamaaCaaaleqabaGaaGymaaaa kiabgUcaRiaadshadaahaaWcbeqaaiaaiodaaaGccqGHciITcqaHip qEcaaIVaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaakiaai2da cqGHsislcqaHXoqydaahaaWcbeqaaiabes7aKbaakiaaiIcacaWG0b GaaGykaiabeI8a5jaaiIcacaWG0bGaaGykaiabgkHiTmaapehabeWc baGaeyOeI0IaaGymaaqaaiaaigdaa0Gaey4kIipakiaadMfacaaIOa GaamiDamaaCaaaleqabaGaaG4maaaakiaaiUdacaWG0bWaaWbaaSqa beaacaaIXaaaaOGaaGilaiaadshadaahaaWcbeqaaiaaikdaaaGcca aISaGaeqOTdONaaGykaiaayIW7cqaHYoGydaahaaWcbeqaaiabes7a KbaakiaaiIcacaWG0bWaaWbaaSqabeaacaaIXaaaaOGaaGilaiaads hadaahaaWcbeqaaiaaikdaaaGccaaISaGaeqOTdONaaGykaiaayIW7 cqaHipqEcaaIOaGaamiDamaaCaaaleqabaGaaGymaaaakiaaiYcaca WG0bWaaWbaaSqabeaacaaIYaaaaOGaaGilaiabeA7a6jaaiMcacaaM i8UaamizaiabeA7a6jabgUcaRaaa@80D7@

                                         + G 0 δ/ ( η δ ( u ¯ ))+ i=1 k μ i G iy δ/ ( η δ ( u ¯ ),η( u ¯ )),tΠ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqGHRa WkcaWGhbWaa0baaSqaaiaaicdaaeaacqaH0oazcaaIVaaaaOGaaGik aiabeE7aOnaaBaaaleaacqaH0oazaeqaaOGaaGikaiqadwhagaqeai aaiMcacaaIPaGaey4kaSYaaabCaeqaleaacaWGPbGaaGypaiaaigda aeaacaWGRbaaniabggHiLdGccqaH8oqBdaWgaaWcbaGaamyAaaqaba GccaWGhbWaa0baaSqaaiaadMgacaWG5baabaGaeqiTdqMaaG4laaaa kiaaiIcacqaH3oaAdaWgaaWcbaGaeqiTdqgabeaakiaaiIcaceWG1b GbaebacaaIPaGaaGilaiabeE7aOjaaiIcaceWG1bGbaebacaaIPaGa aGykaiaaiYcacaaMf8UaamiDaiabgIGiolabfc6aqjaaiYcaaaa@6210@

                              ψ(1, t 2 , t 3 )= P δ ( t 2 , t 3 )λ( t 2 , t 3 ),0 t 2 1,1 t 3 1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEcaaIOaGaaGymaiaaiYcacaWG0bWaaWbaaSqabeaacaaIYaaaaOGa aGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPaGaaGypaiaadc fadaahaaWcbeqaaiabes7aKbaakiaaiIcacaWG0bWaaWbaaSqabeaa caaIYaaaaOGaaGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPa Gaeq4UdWMaaGikaiaadshadaahaaWcbeqaaiaaikdaaaGccaaISaGa amiDamaaCaaaleqabaGaaG4maaaakiaaiMcacaaISaGaaGzbVlaaic dacqGHKjYOcaWG0bWaaWbaaSqabeaacaaIYaaaaOGaeyizImQaaGym aiaaiYcacaaMf8UaeyOeI0IaaGymaiabgsMiJkaadshadaahaaWcbe qaaiaaiodaaaGccqGHKjYOcaaIXaGaaGilaaaa@61D3@

                                                ψ( t 1 ,1, t 3 )=0,0 t 1 1,0 t 3 1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEcaaIOaGaamiDamaaCaaaleqabaGaaGymaaaakiaaiYcacaaIXaGa aGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPaGaaGypaiaaic dacaaISaGaaGzbVlaaicdacqGHKjYOcaWG0bWaaWbaaSqabeaacaaI XaaaaOGaeyizImQaaGymaiaaiYcacaaMf8UaaGimaiabgsMiJkaads hadaahaaWcbeqaaiaaiodaaaGccqGHKjYOcaaIXaGaaGilaaaa@5150@

                                              ψ( t 1 ,0, t 3 )=0,0 t 1 1,1 t 3 0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacqaHip qEcaaIOaGaamiDamaaCaaaleqabaGaaGymaaaakiaaiYcacaaIWaGa aGilaiaadshadaahaaWcbeqaaiaaiodaaaGccaaIPaGaaGypaiaaic dacaaISaGaaGzbVlaaicdacqGHKjYOcaWG0bWaaWbaaSqabeaacaaI XaaaaOGaeyizImQaaGymaiaaiYcacaaMf8UaeyOeI0IaaGymaiabgs MiJkaadshadaahaaWcbeqaaiaaiodaaaGccqGHKjYOcaaIWaGaaGil aaaa@523C@

основное уравнение которой получается из (35) дифференцированием вдоль характеристик, а краевые условия MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@  подстановками соответствующих значений независимых переменных.

ЗАКЛЮЧЕНИЕ

Получены регуляризованные принцип Лагранжа и принцип максимума Понтрягина в выпуклой задаче оптимального управления для управляемой системы, задаваемой линейным функционально-операторнымуравнением второго рода общего вида в пространстве L 2 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGmb Waa0baaSqaaiaaikdaaeaacaWGTbaaaaaa@3675@  (основной оператор правой части уравнения предполагается квазинильпотентным), с выпуклым (не обязательно сильно) целевым функционалом и операторными ограничениями. Показано, что “в пределе” регуляризованные ПЛ и ПМП приводят к своим классическим аналогам. Указанные результаты “расшифрованы” применительно к конкретной задаче рассматриваемого класса, связанной с интегро-дифференциальным уравнением типа уравнения переноса.

 


[1] 0pt3ptЗдесь обратим внимание на монографию [13] (см. также библиографию в ней), посвящённую так называемому SQH-методу (Sequential Quadratic Hamiltonian Method) для решения задач оптимального управления. В его основе лежат связанные непосредственно с ПМП итерационные схемы, использующие числовые регуляризирующие добавки к гамильтонианам задач. Подчеркнём, что SQH-метод нацелен, прежде всего, на решение задач оптимального управления лишь с геометрическими ограничениями.

[2] 0pt3ptНачиная с известных работ L. Tonelli [14] и А. Н. Тихонова [15], название “вольтерровы операторы” (операторы типа Вольтерры) присваивалось разными авторами различным классам операторов со сходными свойствами (используются также названия: причинные операторы, наследственные операторы и др.); см., например, различные определения вольтерровых операторов в [16 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzaeaeaaaaaaaaa8GacaWFtaca aa@3C12@ 20] (случай функциональных операторов), в [16, 21 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzaeaeaaaaaaaaa8GacaWFtaca aa@3C12@ 25] (случай абстрактных операторов) и краткий обзор таких определений в [26, дополнение], а также в [27]. В случае линейных операторов эти определения так или иначе связаны со свойством квазинильпотентности: либо это свойство включено в само определение вольтеррова оператора (см., например, [21, С. 10]), либо при естественных условиях следует из этого определения (см., например, определение [18] функционального оператора “вольтеррова на системе множеств”, являющееся многомерным обобщением определения А.Н. Тихонова, и опирающийся на определение [18] цепочечный признак квазинильпотентности [27, теорема 2]).

[3] 0pt3ptШироко используемое в оптимальном управлении понятие МПР органично сочетает в себе учёт как запросов строгой математической оптимизационной теории [29, гл. 4 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzaeaeaaaaaaaaa8GacaWFtaca aa@3C12@ 8], так и потребностей инженерной практики, предполагающей неизбежное наличие у приближённых решений ненулевых зазоров и при выполнении ограничений задачи, и при приближении значений функционала цели к её (обобщённой) нижней грани [29, гл. 3].

[4] 0pt3ptО взаимосвязи понятия МПР-образующего алгоритма и “более привычного” для задач условной оптимизации понятия регуляризирующего алгоритма [6, гл. 9] см. во введениях работ [9, 10].

[5] 3ptЗаметим, что в силу ограниченности D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaWdaiab=nq8ebaa@3F0F@  условие (??) со стремящимися к нулю последовательностями положительных чисел { δ j } j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b GaeqiTdq2aaWbaaSqabeaacaWGQbaaaOGaaGyFamaaDaaaleaacaWG QbGaaGypaiaaigdaaeaacqGHEisPaaaaaa@3CAF@ , { γ j } j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b Gaeq4SdC2aaWbaaSqabeaacaWGQbaaaOGaaGyFamaaDaaaleaacaWG QbGaaGypaiaaigdaaeaacqGHEisPaaaaaa@3CB1@  имеет место тогда и только тогда, когда u δ j , ε j [ λ j , μ j ] D 0, γ ˜ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWG1b WaaWbaaSqabeaacqaH0oazdaahaaqabeaacaWGQbaaaiaaiYcacqaH 1oqzdaahaaqabeaacaWGQbaaaaaakiaaiUfacqaH7oaBdaahaaWcbe qaaiaadQgaaaGccaaISaGaeqiVd02aaWbaaSqabeaacaWGQbaaaOGa aGyxaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb aceaGae83aXt0aaWbaaSqabeaacaaIWaGaaGilamaaGaaabaGaeq4S dCgacaGLdmaadaahaaqabeaacaWGQbaaaaaaaaa@5537@ , j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaWGQb GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@40E7@ , для некоторой сходящейся к нулю последовательности положительных чисел { γ ˜ j } j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakabbaaaaaaaacXwyJTgapeqaa8aacaaI7b WaaacaaeaacqaHZoWzaiaawoWaamaaCaaaleqabaGaamOAaaaakiaa i2hadaqhaaWcbaGaamOAaiaai2dacaaIXaaabaGaeyOhIukaaaaa@3D73@ .

×

About the authors

V. I. Sumin

Derzhavin Tambov State University

Author for correspondence.
Email: v_sumin@mail.ru
Russian Federation, Tambov

M. I. Sumin

Lobachevskii Nizhnii Novgorod State University

Email: m.sumin@mail.ru
Russian Federation, Nizhnii Novgorod

References

  1. Alekseev, V.M. Optimal Control / V.M. Alekseev, V.M. Tikhomirov, S.V. Fomin. — New York : Plenum Press, 1987.
  2. Avakov, E.R. Lagrange’s principle in extremum problems with constraints / E.R. Avakov, G.G. Magaril-Il’yaev, V.M. Tikhomirov // Russ. Math. Surveys. — 2013. — V. 68, № 3. — P. 401–433.
  3. Arutyunov, A.V. Printsip maksimuma Pontryagina. Dokazatel‘stvo i prilozheniya / A.V. Arutyunov, G.G. Magaril-Il’yaev, V.M. Tikhomirov. — Moscow : Faktorial Press, 2006. — 144 p. [in Russian]
  4. Gamkrelidze, R.V. History of the discovery of the Pontryagin maximum principle / R.V. Gamkrelidze // Proc. Steklov Inst. Math. — 2019. — V. 304. — P. 1–7.
  5. Il-posed problems in the natural science : coll. art. / By eds. A.N. Tikhonov, A.V. Goncharskii. Moscow : MSU Press, 1987. — 303 p. [in Russian]
  6. Vasil’ev, F.P. Metody optimizatsii / F.P. Vasil’ev. — Moscow : MCCME, 2011. Vol. 1: 620 p.; Vol. 2: 433 p. [in Russian]
  7. Sumin, M.I. Regularized parametric Kuhn–Tucker theorem in a Hilbert space / M.I. Sumin // Comput. Math. Math. Phys. — 2011. — V. 51, № 9. — P. 1489–1509.
  8. Sumin, M.I. On ill-posed problems, extremals of the Tikhonov functional and the regularized Lagrange principles / M.I. Sumin // Russ. Universities Reports. Mathematics. — 2022. — V. 27, № 137. — P. 58–79. [in Russian]
  9. Sumin, V.I. On the iterative regularization of the Lagrange principle in convex optimal control problems for distributed systems of the Volterra type with operator constraints / V.I. Sumin, M.I. Sumin // Differ. Equat. — 2022. — V. 58, № 6. — P. 791–809.
  10. Sumin, V.I. On regularization of the Lagrange principle in the optimization problems for linear distributed Volterra type systems with operator constraints / V.I. Sumin, M.I. Sumin // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2022. — V. 59. — P. 85–113. [in Russian]
  11. Fursikov, A.V. Optimal Control of Distributed Systems: Theory and Applications / A.V. Fursikov. — Providence : Amer. Math. Soc., 2000. — 305 p.
  12. Troltzsch, F. Optimal Control of Partial Differential Equations. Theory, Methods and Applications /
  13. F. Troltzsch. — Providence; Rhode Island : Amer. Math. Soc., 2010. — 399 p.
  14. Borzi, A. The Sequential Quadratic Hamiltonian Method. Solving Optimal Control Problems / A. Borzi. —
  15. Boca Raton : Chapman and Hall/CRC Press, 2023.
  16. Tonelli, L. Sulle equazioni funzionali di Volterra / L. Tonelli // Bull. Calcutta Math. Soc. — 1929. — V. 20. — P. 31–48.
  17. Tikhonov, A.N. Functional Volterra-type equations and their applications to certain problems of mathematical physics / A.N. Tikhonov // Bull. Mosk. Gos. Univ. Sekt. A. — 1938. — V. 8, № 1. — P. 1–25. [in Russian]
  18. Zabreiko, P.P. Integral Volterra operators / P.P. Zabreiko // Uspekhi Mat. Nauk. — 1967. — V. 22, № 1. —
  19. P. 167–168. [in Russian]
  20. Shragin, I.V. Abstract Nemyckii operators are locally defined operators / I.V. Shragin // Sov. Math. Dokl. — 1976. — V. 17. — P. 354–357.
  21. Sumin, V.I. Volterra functional-operator equations in the theory of optimal control of distributed systems / V.I. Sumin // Sov. Math. Dokl. — 1989. — V. 39, № 2. — P. 374–378.
  22. Zhukovskii, E.S. On the theory of Volterra equations / E.S. Zhukovskii // Differ. Equat. — 1989. — V. 25,
  23. № 9. — P. 1132–1137.
  24. Corduneanu, C. Integral Equations and Applications / C. Corduneanu. — Cambridge; New York : Cambridge
  25. University Press, 1991. — 376 p.
  26. Gohberg, I.C. Theory and Applications of Volterra Operators in Hilbert Space / I.C. Gohberg, M.G. Krein. —
  27. Amer. Math. Soc., 1970. — 378 p.
  28. Bughgeim, A.L. Volterra Equations and Inverse Problems / A.L. Bughgeim. — Utrecht : VSP BV, 1999.
  29. Gusarenko, S.A. On a generalization of the notion of Volterra operator / S.A. Gusarenko // Sov. Math. Dokl. — 1988. — V. 36, № 1. — P. 156–159.
  30. Vath, M. Abstract Volterra equations of the second kind / M. V¨ath // J. Equat. Appl. — 1998. — V. 10, № 9. — P. 125–144.
  31. Zhukovskii, E.S. Abstract Volterra operators / E.S. Zhukovskii, M.J. Alves // Russ. Mathematics. — 2008. —
  32. V. 52, № 3. — P. 1–14.
  33. Sumin, V.I. Functional Volterra equations in the theory of optimal control of distributed systems / V.I. Sumin. — Nizhnii Novgorod : Izd-vo Nizhegorodskogo gosuniversiteta, 1992. — 110 p. [in Russian]
  34. Sumin, V.I. Operators in spaces of measurable functions: The Volterra property and quasinilpotency / V.I. Sumin, A.V. Chernov // Differ. Equat. — 1998. — V. 34, № 10. — P. 1403–1411.
  35. Sumin, V.I. Controlled Volterra functional equations and the contraction mapping principle / V.I. Sumin //
  36. Trudy Inst. Mat. Mekh. UrO RAN. — 2019. — V. 25, № 1. — P. 262–278. [in Russian]
  37. Warga, J. Optimal control of differential and functional equations / J. Warga. — New York : Acad. Press, 1972.
  38. Sumin, M.I. Stable sequential convex programming in a Hilbert space and its application for solving unstable problems / M.I. Sumin // Comput. Math., Math. Phys. — 2014. — V. 54, № 1. — P. 22–44.
  39. Bakushinskii, A.B. Iterative Methods for Solving Ill-Posed Problems / A.B. Bakushinskii, A.V. Goncharskii. — Moscow : Nauka, 1989. — 126 p. [in Russian]
  40. Sumin, M.I. On regularization of the classical optimality conditions in convex optimal control problems /
  41. M.I. Sumin // Trudy Inst. Mat. Mekh. UrO RAN. — 2020. — V. 26, № 2. — P. 252–269. [in Russian]
  42. Sumin, M.I. Nondifferential Kuhn–Tucker theorems in constrained extremum problems via subdifferentials of
  43. nonsmooth analysis / M.I. Sumin // Russ. Universities Reports. Mathematics. — 2020. — V. 25, № 131. —
  44. P. 307–330. [in Russian]
  45. Aubin, J.P. L’analyse non lin/eaire et ses motivations /economiques / J.P. Aubin. — Paris : Masson, 1984. — 214 p.
  46. Loewen, P.D. Optimal Control via Nonsmooth Analysis / P.D. Loewen. — Providence, Rhode Island, USA :
  47. Amer. Math. Soc., 1993. — 153 p.
  48. Jorgens, K. An asymptotic expansion in the theory of neutron transport / K. Jorgens // Comm. Pure Appl.
  49. Math. — 1958. — V. 11, № 2. — P. 219–242.
  50. Morozov, S.F. Non-stationary integro-differential transport equation / S.F. Morozov // Izvestiya vysshikh uchebnykh zavedeniy. Matematika. — 1969. — № 1. — P. 26–31. [in Russian]
  51. Kuznetsov, Yu.A. Correctness of the mixed problem statement for the nonstationary transport equation /
  52. Yu.A. Kuznetsov, S.F. Morozov // Differ. uravneniya. — 1972. — V. 8, № 9. — P. 1639–1648. [in Russian]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».