EXISTENCE AND UNIQUENESS OF STRONG SOLUTIONS TO MIXED-TYPE STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY THE FRACTIONAL BROWNIAN MOTIONS WITH HURST INDICES 𝐻 > 1/4
- Authors: Vaskouski M.M1, Stryuk P.P1
-
Affiliations:
- Belarusian State University
- Issue: Vol 60, No 6 (2024)
- Pages: 723-735
- Section: ORDINARY DIFFERENTIAL EQUATIONS
- URL: https://journal-vniispk.ru/0374-0641/article/view/265609
- DOI: https://doi.org/10.31857/S0374064124060017
- EDN: https://elibrary.ru/KWWAAK
- ID: 265609
Cite item
Abstract
About the authors
M. M Vaskouski
Belarusian State University
Email: vaskovskii@bsu.by
Minsk, Belarus
P. P Stryuk
Belarusian State University
Email: pavel.stryouk@gmail.com
Minsk, Belarus
References
- Stochastic calculus for fractional Brownian motion and applications / F. Biagini, Y. Hu, B. Oksendal, T. Zhang. — London : Springer-Verlag, 2008.
- Mishura, Yu.S. Stochastic calculus for fractional Brownian motion and related processes / Yu.S. Mishura. — Berlin ; Heidelberg : Springer-Verlag, 2008.
- Guerra, J. Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion / J. Guerra, D. Nualart // Stochastic Anal. Appl. — 2008. — V. 26, № 5. — P. 1053–1075.
- Mishura, Y.S. Existence and uniqueness of the solution of stochastic differential equation involving Wiener process and fractional Brownian motion with Hurst index 𝐻 >1/2 / Y.S. Mishura, G.M. Shevchenko // Communications in Statistics. Theory and Methods. — 2011. — V. 40, № 19–20. — P. 3492–3508.
- Levakov, A.A. and Vas’kovskii, M.M., Existence of weak solutions of stochastic differential equations with standard and fractional Brownian motions and with discontinuous coefficients, Differ. Equat., 2014, vol. 50, no. 2, pp. 189–202.
- Levakov, A.A. and Vas’kovskii, M.M., Existence of solutions of stochastic differential inclusions with standard and fractional Brownian motions, Differ. Equat., 2015, vol. 51, no. 8, pp. 991–997.
- Levakov, A.A. and Vas’kovskii, M.M., Properties of solutions of stochastic differential equations with standard and fractional Brownian motions, Differ. Equat., 2016, vol. 52, no. 8, pp. 972–980.
- Vas’kovskii, M.M., Stability and attraction of solutions of nonlinear stochastic differential equations with standard and fractional Brownian motions, Differ. Equat., 2017, vol. 53, no. 2, pp. 157–170
- Levakov, A.A. and Vas’kovskii, M.M., Stokhasticheskie differentsial’nye uravneniya i vklyucheniya (Stochastic Differential Equations and Inclusions), Minsk: Bel. Gos. Univ., 2019.
- Nualart, D. Differential equations driven by fractional Brownian motion / D. Nualart, A. Rascanu // Collectanea Mathematica. — 2002. — V. 53, № 1. — P. 55–81.
- Lyons, T. Differential equations driven by rough signals / T. Lyons // Revista Matematica Iberoamericana. — 1998. — V. 14, № 2. — P. 215–310.
- Gubinelli, M. Controlling rough paths / M. Gubinelli // J. Funct. Anal. — 2004. — V. 216, № 1. — P. 86–140.
- Friz, P. A Course on Rough Paths with an Introduction to Regularity Structures / P. Friz, M. Hairer. — Cham : Springer, 2014.
- Vaskouski, M. Asymptotic expansions of solutions of stochastic differential equations driven by multivariate fractional Brownian motions having Hurst indices greater than 1/3 / M. Vaskouski, I. Kachan // Stochastic Anal. Appl. — 2018. — V. 36, № 6. — P. 909–931.
- Vas’kovskii, M.M. and Karpovich, A.A., Finiteness of moments of solutions to mixed-type stochastic differential equations driven by standard and fractional Brownian motions, Differ. Equat., 2021, vol. 57, no. 2, pp. 148–154.
- Coutin, L. Stochastic analysis, rough path analysis and fractional Brownian motions / L. Coutin, Z. Qian // Probability Theory Related Fields. — 2002. — V. 122, № 1. — P. 108–140.
- Vas’kovskii, M.M., Existence and uniqueness of solutions of differential equations weakly controlled by rough paths with an arbitrary positive Holder exponent, Differ. Equat., 2021, vol. 57, no. 10, pp. 1279–1291.
- Vas’kovskii, M.M., Stability of solutions of stochastic differential equations weakly controlled by rough paths with arbitrary positive Holder exponent, Differ. Equat., 2021, vol. 57, no. 11, pp. 1419–1425.
- Vas’kovskii, M.M., Analog of the Kolmogorov equations for one-dimensional stochastic differential equations controlled by fractional Brownian motion with Hurst exponent 𝐻 ∈ (0, 1), Differ. Equat., 2022, vol. 58, no. 1, pp. 9–14.
- Harang, F.A. On the theory of rough paths, fractional and multifractional Brownian motion with applications to finance : dissertation . . . master of mathematics / F.A. Harang. — Oslo, 2015. — 83 p.
Supplementary files
