DIFFERENCE SCHEME WITH WELL CONTROLLED DISSIPATION FOR SOLUTION OF KAPILA MODEL
- Authors: Polekhina R.R.1, Savenkov E.B.1
-
Affiliations:
- Keldysh Institute of Applied Mathematics of RAS
- Issue: Vol 60, No 7 (2024)
- Pages: 937–953
- Section: NUMERICAL METHODS
- URL: https://journal-vniispk.ru/0374-0641/article/view/265850
- DOI: https://doi.org/10.31857/S0374064124070072
- EDN: https://elibrary.ru/KNICMU
- ID: 265850
Cite item
Abstract
About the authors
R. R. Polekhina
Keldysh Institute of Applied Mathematics of RAS
Email: tukhvatullinarr@gmail.com
Moscow, Russia
E. B. Savenkov
Keldysh Institute of Applied Mathematics of RAS
Email: savenkov@keldysh.ru
Moscow, Russia
References
- Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations / A.K. Kapila, R. Menikoff, Y. Bdzil [et al.] // Physics of Fluids. — 2001. — V. 13, № 10. — P. 3002–3024.
- Kapila, A.K., Menikoff, R., Bdzil, Y., Son, S.F., and Stewart, D.S., Two-phase modeling of deflagration-todetonation transition in granular materials: reduced equations, Physics of Fluids, 2001, vol. 13, no. 10, pp. 3002–3024.
- Two-phase modeling of DDT: structure of the velocity-relaxation zone / A.K. Kapila, S.F. Son, J.B. Bdzil [et al.] // Physics of Fluids. — 1997. — V. 9, № 12. — P. 3885–3897.
- Kapila, A.K., Son, S.F., Bdzil, J.B., Menikoff, R., and Stewart, D.S., Two-phase modeling of DDT: structure of the velocity-relaxation zone, Physics of Fluids, 1997, vol. 9, no. 12, pp. 3885–3897.
- Le Floch, P. Shock waves for nonlinear hyperbolic systems in nonconservative form / P. Le Floch // IMA Preprint Series. — 1989. — № 53.
- LeFloch, P., Shock waves for nonlinear hyperbolic systems in nonconservative form, IMA Preprint Series, 1989 , no. 53.
- Dal Maso, G. Definition and weak stability of nonconservative products / G. Dal Maso, P.G. LeFloch, F. Murat // J. de math.ematiques pures et appliqu.ees. — 1995. — V. 74, № 6. — P. 483–548.
- Maso, G., Le Floch, P., and Murat, F., Definition and weak stability of nonconservative products, J. de math/ematiques pures et appliqu/ees, 1995, vol. 74, no. 6, pp. 483–548.
- LeFloch, P.G. Why many theories of shock waves are necessary: kinetic functions, equivalent equations, and fourth-order models / P.G. LeFloch, M. Mohammadian // J. Comput. Phys. — 2008. — V. 227, № 8. — P. 4162–4189.
- LeFloch, P.G. and Mohammadian, M., Why many theories of shock waves are necessary: kinetic functions, equivalent equations, and fourth-order models, J. Comp. Phys., 2008, vol. 227, no. 8, pp. 4162–4189.
- Saurel, R. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures / R. Saurel, P. Petitpas, R.A. Berry // J. Comp. Phys. — 2009. — V. 228, № 5. — P. 1678–1712.
- Saurel, R., Petitpas, P., and Berry, R.A., Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comp. Phys., 2009, vol. 228, no. 5, pp. 1678–1712.
- Меньшов, И.С. Численная модель многофазных течений на основе подсеточного разрешения контактных границ / И.С. Меньшов, А.А. Серёжкин // Журн. вычислит. математики и мат. физики. — 2022. — Т. 62, № 10. — С. 1740–1760.
- Menshov, I.S. and Serezhkin, A.A., Numerical model of multiphase flows based on sub-cell resolution of fluid interfaces, Comput. Math. Math. Phys., 2022, vol. 62, no. 10, pp. 1723–1742.
- In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems — second-order extension / P.-G. Ernesto, M.J. Castro, C. Chalons [et al.] // J. Comp. Phys. — 2022. — V. 459. — Art. 111152.
- Ernesto, P.-G., Castro, M.J., Chalons, C., De Luna, T.M., and Par/es, C., In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems — Second-order extension, J. Comp. Phys., 2022, vol. 459, art. 111152.
- Warming, R.F. The modified equation approach to the stability and accuracy analysis of finitedifference method / R.F. Warming, B.J. Hyett // J. Comp. Phys. — 1974. — V. 14, № 2. — P. 159–179.
- Warming, R.F. and Hyett, B.J., The modified equation approach to the stability and accuracy analysis of finitedifference method, J. Comp. Phys., 1974, vol. 14, no. 2, pp. 159–179.
- Шокин, Ю.И. Метод дифференциального приближения / Ю.И. Шокин. — Новосибирск : Наука, 1979. — 221 с.
- Shokin, Yu.I, The Method of Differential Approximation, Berlin; New York: Springer-Verlag, 1983.
- Шокин, Ю.И. Метод дифференциального приближения. Применение к газовой динамике / Ю.И. Шокин, Н.Н. Яненко. — Новосибирск : Наука, 1985. — 364 с.
- Shokin, Yu.I. and Yanenko, N.N., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike (The Method of Differential Approximation. Application to Gas Dynamics), Novosibirsk: Nauka, Siberian Branch, 1985.
- Шокин, Ю.И. Метод дифференциального приближения / Ю.И. Шокин // Препринт АН СССР. Сиб. отд-е, ВЦ. — 1990. — № 7. — 50 с.
- Shokin, Yu.I., Metod differentsialnogo priblizheniya (Differential Approximation Method), Preprint of USSR Academy of Sciences. Siberian Branch, 1990, no. 7.
- Schemes with well-controlled dissipation. Hyperbolic systems in nonconservative form / A. Beljadid, P.G. LeFloch, S. Mishra, C. Par.es // Communicat. Comput. Phys. — 2017. — V. 21, № 4. — P. 913–946.
- Beljadid, A., LeFloch, P.G., Mishra, S., and Par/es, C., Schemes with well-controlled dissipation. Hyperbolic systems in nonconservative form, Communicat. Comput. Phys., 2017, vol. 21, no. 4, pp. 913–946.
- Гельфанд, И.М. Некоторые задачи теории квазилинейных уравнений / И.М. Гельфанд // Успехи мат. наук. — 1959. — Т. 14, № 2 (86). — С. 87–158.
- Gel’fand, I.M., Some problems in the theory of quasilinear equations, Ser. 2, Am. Math. Soc., 1963, vol. 29, pp. 295–381.
- Петровский, И.Г. О проблеме Cauchy для систем линейных уравнений с частными производными в области неаналитических функций / И.Г. Петровский // Бюлл. Моск. гос. ун-та. Секция А. Математика и механика. — 1938. — Т. 1, вып. 7. — 39 с.
- Petrovskii, I.G., O probleme Cauchy dlia sistem lineynykh uravneniy c chastnymi proizvodnymi v oblasti neanaliticheskikh funktsiy (On the Couchy problem for linear systems of partial differential equations in domain of non-analytical functions), Bull. of Moscow State University. Series A. Mathematics and Mechanics, 1938, vol. 1, no. 7, 39 p.
- Majda, A. Stable viscosity matrices for systems of conservation laws / A. Majda, L. Pego // J. Differ. Equat. — 1985. — V. 56, № 2. — P. 229–262.
- Majda, A., Stable viscosity matrices for systems of conservation laws, J. Differ. Equat., 1985, vol. 56, no. 2, pp. 229–262.
- Полехина, Р.Р. К вопросу о численном решении неконсервативных гиперболических систем уравнений / Р.Р. Полехина, М.В. Алексеев, Е.Б. Савенков // Дифференц. уравнения. — 2023. — T. 59, № 7. — С. 968–982.
- Polekhina, R.R., Alekseev, M.V., and Savenkov, E.B., On the numerical solution of nonconservative hyperbolic systems of equations, Differ. Equat., 2023, vol. 59, no. 7, pp. 970–984.
- Куликовский, А.Г. Нелинейные волны в упругих средах / A.Г. Куликовский, Е.И Свешникова. — М. : Лицей, 1998. — 412 с.
- Kulikovskiy, A.G. and Sveshnikova, E.I., Nelineinye volny v uprugikh sredah (Nonlinear Waves in Elastic Media), Moscow: Litsey, 1998.
- Cockburn, B. The Runge-Kutta local projection-discontinuous-Galerkin finite element method for scalar conservation laws / B. Cockburn, C.-W. Shu // ESAIM Math. Model. Numer. Anal. — 1991. — V. 25, № 3. — P. 337–361.
- Cockburn, B. and Shu, C.-W. The Runge-Kutta local projection-discontinuous-Galerkin finite element method for scalar conservation laws, ESAIM Math. Model. Numer. Anal., 1991, vol. 25, no. 3, pp. 337–361.
- Dumbser, M. A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems / M. Dumbser, D.S. Balsara // J. Comp. Phys. — 2016. — V. 304. — P. 275–319.
- Dumbser, M. and Balsara, D., A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comp. Phys., 2016, vol. 304, pp. 275–319.
Supplementary files
