BOUNDARY PROBLEM FOR THE LAPLACE EQUATION WITH MIXED BOUNDARY CONDITIONS IN A SEMIBAND

Cover Page

Cite item

Full Text

Abstract

Theorems on the existence and uniqueness of the solution to the Laplace equation with mixed boundary conditions in a semiband have been proven in the work. Additionally, integral representations for the partial derivatives of the solution have been obtained.

About the authors

N. Y. Kapustin

Lomonosov Moscow State University

Email: n.kapustin@bk.ru
Russia

D. D. Vasilchenko

Lomonosov Moscow State University

Email: dvasil.arm@gmail.com
Russia

References

  1. Моисеев, Е.И. Об интегральном представлении задачи Неймана–Трикоми для уравнения Лаврентьева–Бицадзе / Е.И. Моисеев, Т.Е. Моисеев, Г.О. Вафодорова // Дифференц. уравнения. — 2015. — Т. 51, № 8. — С. 1070–1075.
  2. Moiseev, E.I., Moiseev, T.E., and Vafodorova, G.O., On an integral representation of the Neumann–Tricomi problem for the Lavrent’ev–Bitsadze equation, Differ. Equat., 2015, vol. 51, no. 8, pp. 1065–1071.
  3. Моисеев, Е.И. О базисности одной системы синусов / Е.И. Моисеев // Дифференц. уравнения. — 1987. — Т. 23, № 1. — С. 177–189.
  4. Moiseev, E.I., O bazisnosti odnoj sistemy sinusov, Differ. Uravn., 1987, vol. 23, no. 1, pp. 177–189.
  5. Бицадзе, А.В. Некоторые классы уравнений в частных производных / А.В. Бицадзе. — М. : Наука, 1981. — 448 c.
  6. Bicadze, A.V., Nekotorye klassy uravnenij v chastnyh proizvodnyh (Some Classes of Partial Differential Equations), Moscow: Nauka, 1981.
  7. Моисеев, Т.Е. Об интегральном представлении решения уравнения Лапласа со смешанными краевыми условиями / Т.Е. Моисеев // Дифференц. уравнения. — 2011. — Т. 47, № 10. — С. 1446–1451.
  8. Moiseev, T.E., On an integral representation of the solution of the Laplace equation with mixed boundary conditions, Differ. Equat., 2011, vol. 47, no. 10, pp. 1461–1467.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).