EXISTENCE OF SOLUTIONS OF THE BOUNDARY VALUE PROBLEM FOR THE DIFFUSION EQUATION WITH PIECEWISE CONSTANT ARGUMENTS

Cover Page

Cite item

Full Text

Abstract

In this paper the boundary value problem (BVP) for diffusion equation with piecewise constant arguments is studied. By using the separation of variables method, the considered BVP is reduced to the investigation of the existence conditions of solutions of initial value problems for differential equation with piecewise constant arguments. Existence conditions of infinitely many solutions or emptiness for considered differential equation are established and explicit formula for these solutions are obtained. Several examples are given to illustrate the obtained results.

About the authors

M. I. Muminov

V.I. Romanovskiy Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan; Samarkand State University named after Sharof Rashidov

Email: mmuminov@mail.ru
Tashkent, Uzbekistan; Tashkent, Uzbekistan

T. A. Radjabov

Samarkand State University named after Sharof Rashidov; Kimyo International University in Tashkent

Email: radjabovtirkash@yandex.com
Tashkent, Uzbekistan; Tashkent, Uzbekistan

References

  1. Hale, J.K. Introduction to Functional Differential Equations / J.K. Hale, S.M.V. Lunel. — New York : Springer Science Business Media, 2013. — 449 p.
  2. Almost Periodic Solutions of Differential Equations in Banach Spaces / Y. Hino, T. Naito, N.V. Minh, J.S. Shin. — London ; New York : Taylor & Francis, 2002. — 249 p.
  3. Wiener, J. Generalized Solutions of Functional Differential Equations / J. Wiener. — Singapore ; New Jersey ; London ; Hong Kong : World Scientific, 1993. — 410 p.
  4. Cooke, K.L. A survey of differential equations with piecewise continuous arguments / K.L. Cooke, J. Wiener // Delay Differential Equations and Dynamical Systems, Proc. of a Conf. in Honor of Kenneth Cooke Held in Claremont, California / Eds. S. Busenberg, M. Martelli. — Berlin : Springer-Verlag, 1991. — P. 1–15.
  5. Muminov, M.I. On the method of finding periodic solutions of second-order neutral differential equations with piecewise constant arguments / M.I. Muminov // Advances in Difference Equations. — 2017. — V. 336. — P. 1–17.
  6. Muminov, M.I. Existence conditions for periodic solutions of second-order neutral delay differential equations with piecewise constant arguments / M.I. Muminov, Ali H.M. Murid // Open Math. — 2020. — V. 18, № 1. — P. 93–105.
  7. Wiener, J. Boundary-value problems for partial differential equations with piecewise constant delay / J. Wiener // Int. J. Math. Math. Sci. — 1991. — V. 14. — P. 301–321.
  8. Wiener, J. Partial differential equations with piecewise constant delay / J. Wiener, L. Debnath // Int. J. Math. Math. Sci. — 1991. — V. 14. — P. 485–496.
  9. Wiener, J. Oscillatory and periodic solutions to a diffusion equation of neutral type / J. Wiener, W. Heller // Int. J. Math. Math. Sci. — 1999. — V. 22, № 2. — P. 313–348.
  10. Wiener, J. Boundary value problems for the diffusion equation with piecewise continuous time delay / J. Wiener, L. Debnath // Int. J. Math. Math. Sci. — 1997. — Т. 20, № 1. — С. 187–195.
  11. Buyukkahraman, M.L. On a partial differential equation with piecewise constant mixed arguments / M.L. Buyukkahraman, H. Bereketoglu // Iran J. Sci. Technol. Trans. Sci. — 2020. — V. 44. — P. 1791–1801.
  12. Veloz, T. Existence, computability and stability for solutions of the diffusion equation with general piecewise constant argument / T. Veloz, M. Pinto // J. Math. Anal. Appl. — 2015. — V. 426, № 1. — P. 330–339.
  13. Wang, Q. Analytical and numerical stability of partial differential equations with piecewise constant arguments / Q. Wang, J. Wen // Numer. Methods Partial Differ. Equat. — 2014. — V. 30, № 1. — P. 1–16.
  14. Muminov, M.I. Forced diffusion equation with piecewise continuous time delay / M.I. Muminov, T.A. Radjabov // Adv. Math. Sci. J. — 2021. — V. 10, № 4. — P. 2269–2283.
  15. Muminov, M.I. On existence conditions for periodic solutions to a differential equation with constant argument / M.I. Muminov, T.A. Radjabov // Nanosystems: Phys. Chem. Math. — 2022. — V. 13, № 5. — P. 491–497.
  16. Muminov, M.I. Existence conditions for 2-periodic solutions to a non-homogeneous differential equations with piecewise constant argument / M.I. Muminov, T.A. Radjabov // Examples and Counterexamples. — 2024. — V. 5. — Art. 100145.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).