О РАСПРЕДЕЛЕНИИ СПЕКТРА ОПЕРАТОРА ВЕБЕРА, ВОЗМУЩЁННОГО 𝛿-ФУНКЦИЕЙ ДИРАКА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В гильбертовом пространстве 𝐿2[0,+∞) исследован оператор Штурма–Лиувилля, порождаемый дифференциальным выражением специального вида, содержащим дельта-функцию Дирака, с нулевым краевым условием. Доказано, что собственные значения 𝜆𝑛 этого оператора удовлетворяют определённым неравенствам. Решён вопрос о расположении первого собственного значения 𝜆1 в зависимости от параметров возмущения, в частности, найдены условия, при которых 𝜆1 становится отрицательным.

Об авторах

А. С. Печенцов

Московский государственный университет имени М.В. Ломоносова

Email: pechentsovas@rambler.ru

Список литературы

  1. Печенцов, А.С. Распределение спектра оператора Вебера, возмущённого 𝛿-функцией Дирака / А.С. Печенцов // Дифференц. уравнения. — 2021. — Т. 57, № 8. — С. 1032–1038.
  2. Pechentsov, A.S., Spectral distribution of the Weber operator perturbed by the Dirac delta function, Differ. Equat., 2021, vol. 57, no. 8, pp. 1003–1009.
  3. Савчук, А.М. Операторы Штурма–Лиувилля с сингулярными потенциалами / А.М. Савчук, А.А. Шкаликов // Мат. заметки. — 1999. — Т. 1. — С. 897–912.
  4. Savchuk, A.M. and Shkalikov, A.A., Sturm–Liouville operators with singular potentials, Math. Notes, 1999, vol. 66, no. 6, pp. 741–753.
  5. Савчук, А.М. Операторы Штурма–Лиувилля с потенциалами-распределениями / А.М. Савчук, А.А. Шкаликов // Тр. Моск. мат. об-ва. — 2003. — Т. 64. — С. 159–212.
  6. Savchuk, A.M. and Shkalikov, A.A., Sturm–Liouville operators with distribution potentials, Trans. Moscow Math. Soc., 2003, vol. 64, pp. 143–192.
  7. Решаемые модели в квантовой механике / С. Альбеверио, Ф. Гостези, Р. Хёэг-Крон, Х. Хольден ; пер. с англ. В.А. Гейлера и др. — М. : Мир, 1991. — 566 с.
  8. Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., and Holden, H., Solvable Models in Quantum Mechanics, New York: Springer-Verlag, 1988.
  9. Albeverio, S. Spectral theory of semibounded Sturm–Liouville operators with local interactions on a discrete set / S. Albeverio, A. Kostenko, M. Malamud // J. Math. Phys. — 2010. — V. 51. — Art. 102102.
  10. Рид, М. Методы современной математической физики. Т. 4. Анализ операторов / M. Рид, Б. Саймон ; пер. с англ. А.К. Погребкова и В.Н. Сушко ; под ред. М.К. Поливанова и В.Н. Сушко. — М. : Мир, 1982. — 428 с.
  11. Reed, M. and Simon, B., Methods of Modern Mathematical Physics. IV: Analysis of Operators, New York; San Francisco; London: Academic Press, 1978.
  12. Уиттекер, Э.Т. Курс современного анализа. Ч. 2. Трансцендентные функции / Э.Т. Уиттекер, Дж.Н. Ватсон ; пер. с англ. под ред. Ф.В. Широкова. — 2-е изд. — М. : Физматлит, 1963. — 516 с.
  13. Whittaker, E.T. and Watson, G.N., A Course of Modern Analysis, Cambridge: Cambridge Univ. Press, 1927.
  14. Славянов, С.Ю. Асимптотика решений одномерного уравнения Шредингера / C.Ю. Славянов. — Л. : Изд-во ЛГУ, 1990. — 256 c.
  15. Slavyanov, S.Yu., Asimptotika reshenii odnomernogo uravneniya Shredingera (Asymptotics of Solutions of the One-Dimensional Schredinger Equation), Leningrad: Leningr. Gos. Univ., 1990.
  16. Федорюк, М.В. Асимптотика. Интегралы и ряды / М.В. Федорюк. — М. : Наука, 1987. — 544 с.
  17. Fedoruk M.V. Asimptotika: Integrali i ryadi (Asymptotics: Integrals and Series), Moscow: Nauka, 1987.
  18. Левитан, Б.М. Операторы Штурма–Лиувилля и Дирака / Б.М. Левитан, И.С. Саргсян. — М. : Наука, 1988. — 512 с.
  19. Levitan, B.M. and Sargsyan, I.S., Sturm–Liouville and Dirac Operators, Dordrecht: Kluwer, 1991.
  20. Олвер, Ф. Асимптотика и специальные функции / Ф. Олвер ; пер. с англ. Ю.А. Брычкова ;под ред. А.П. Прудникова. — М. : Наука, 1990. — 528 с.
  21. Olver, F.W.J., Asymptotics and Special Functions, New York: Academic Press, 1974.
  22. Прудников, А.П. Интегралы и ряды. Т. 1. Элементарные функции / А.П. Прудников, Ю.А. Брычков, О.И. Маричев. — М. : Наука, 1981. — 800 c.
  23. Prudnikov, A.P., Brychkov, Yu.A., and Marichev, O.I., Integrals and Series. Elementary Functions, New York etc.: Gordon and Breach Science Publishers, 1986.
  24. Титчмарш, Э.Ч. Разложения по собственным функциям, связанные с дифференциальными уравнениями второго порядка / Э.Ч. Титчмарш ; пер. с англ. В.Б. Лидского ; под ред. Б.М. Левитана. — М. : Иностр. лит., 1960. — Т. 1. — 278 с.
  25. Titchmarsh, E.C., Eigenfunction Expansions Associated with Second-order Differential Eguations, Oxford: Clarendon Press, 1946, vol. 1.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).