ON DIFFERENTIAL EQUATIONS WITH EVEN NUMBER OF PERIODIC SOLUTIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We distingulshed a class of nonlinear ordinary differential equations having even number of periodic solutions. The conditions of existing of at least two such soluitions are given.

About the authors

V. S Klimov

P.G. Demidov Yaroslavl State University

Email: vsk76@list.ru
Russia

References

  1. Sobolev, S.L., Nekotorye primeneniya funcionalnogo analiza v matematicheskoi fizike (Some Applications of Functional Analysis to Mathematical Physics), Moscow: Nauka, 1988.
  2. Nikolskii, S.M., Priblizhenie funcii mnogih peremennyh i teoremy vlozheniya (Approximation of Multivariable Functions and Embedding Theorems), Moscow: Nauka, 1977.
  3. Krasnoselsky, M.A., Burd, V.Sh., and Kolesov, Yu.S., Nelineinye pochti periodicheskie kolebaniya (Nonlinear Almost-Periodic Oscillations), Moscow: Nauka, 1970.
  4. Krasnoselsky, M.A., Lifshitz, E.A., and Sobolev, A.V., Pozitivnye lineinye sistemy (Positive Linear Systems), Moscow: Nauka, 1985.
  5. Klimov, V.S., Estimates of integrally bounded solutions of linear differential inequalities, Differ. Equat., 2023, vol. 59, no. 9, pp. 1151–1165.
  6. Lere, Zh. and Shauder, Yu., Topology and functional equations, Usp. Mat. Nauk, 1946, vol. 1, no. 3–4, pp. 71–95.
  7. Krasnoselsky, M.A. and Zabreiko, P.P., Geometricheskie metody nelineinogo analiza (Geometric Methods of Non-Linear Analysis), Moscow: Nauka, 1975.
  8. Smale, S. An infinite dimentional of Sard’s theorem / S. Smale // Amer. J. Math. — 1965. — V. 87. — P. 861–867.
  9. Zvyagin, V.G. and Ratiner, N.M., Oriented degree of Fredholm maps: finite-dimensional reduction method, J. Math. Sci., 2015, vol. 204, pp. 543–714.
  10. Klimov, V.S. and Pavlenko, A.N., Reverse functional inequalities and their applications to nonlinear elliptic boundary value problems, Siberian Math. J., 2001, vol. 42, no. 4, pp. 656–667.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).