ON THE ASYMPTOTICS OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS OF ODD ORDER

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The asymptotic behavior for large values of the independent variable of the fundamental system of solutions of linear differential equations generated by a symmetric two-term differential expression of arbitrary odd order is investigated, depending on the coefficients of the highest derivative and the free term.

About the authors

Ya. T Sultanaev

Moscow Center for Fundamental and Applied Mathematics; Akmulla Bashkir State Pedagogical University

Email: sultanaevyt@gmail.com

B. I Mardanov

Akmulla Bashkir State Pedagogical University

Email: mardanov_bulat@list.ru

E. A Nazirova

Ufa University of Science and Technology

Email: ellkid@gmail.com

References

  1. Valeeva, L.N., Nazirova, E.A., and Sultanaev, Ya.T., On a method for studying the asymptotics of solutions of Sturm–Liouville differential equations with rapidly oscillating coefficients, Math. Notes, 2022, vol. 112, no. 6, pp. 1059–1064.
  2. Valeev, N.F., Nazirova, E.A., and Sultanaev, Ya.T., On a new approach for studying asymptotic behavior of solutions to singular differential equations, Ufa Math. J., 2015, vol. 7, no. 3, pp. 9–14.
  3. Valeev, N.F., Myakinova, O.V., and Sultanaev, Ya.T., On the asymptotics of solutions of a singular 𝑛th-order differential equation with nonregular coefficients, Math. Notes, 2018, vol. 104, no. 4, pp. 606–611.
  4. Rossmann, W. Lie Groups — an Introduction Through Linear Groups / W. Rossmann. — Oxford : Oxford University Press, 2006. — 265 p.
  5. Everitt, W.N. Boundary value problem and symplectic algebra for ordinary differential and quasidifferential operators / W.N. Everitt, L. Marcus. — Providence : Amer. Math. Soc., 1999. — 187 p.
  6. Naimark, M.A., Lineynyye differentsial’nyye operatory (Linear Differential Operators), Moscow: Nauka, 1969.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).