ON THE EXISTENCE OF A POSITIVE SOLUTION TO A BOUNDARY-VALUE PROBLEM FOR ONE NONLINEAR ORDINARY DIFFERENTIAL EQUATION OF THE FOURTH ORDER

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The question of the existence of a positive solution to a two-point boundary value problem with homogeneous almost symmetric boundary conditions for one nonlinear fourth-order ordinary differential equation is investigated.

About the authors

G. E Abduragimov

Dagestan State University

Email: gusen_e@mail.ru
Makhachkala, Russia

References

  1. Yan, D. Positive solutions for a singular superlinear fourth-order equation with nonlinear boundary conditions / D. Yan // J. Funct. Spaces. — 2020. — V. 2020. — P. 1–6.
  2. Zhang, Y. Positive solution for a class of nonlinear fourth-order boundary value problem / Y. Zhang, L. Chen // AIMS Math. — 2023. — V. 8. — P. 1014–1021.
  3. Chen, H. Existence and uniqueness of solutions to the nonlinear boundary value problem for fourthorder differential equations with all derivatives / H. Chen, Y. Cui // J. Inequal. Appl. — 2023. — V. 2023. — P. 1–13.
  4. Harjani, S. Existence and uniqueness of positive solutions for a nonlinear fourth-order boundary value problem / S. Harjani, S. Kishin // Positivity. — 2010. — V. 14. — P. 849–858.
  5. Abduragimov, E.I., A positive solution to a two-point boundary value problem for one fourth-order nonlinear ODE and a numerical method for its construction, Vestnik of Samara University. Natural Science Series, 2010, no. 2 (76), pp. 5–12.
  6. Abduragimov, E.I., Existence of a positive solution to a two-point boundary value problem for one fourth-order nonlinear ODE, Vestnik of Samara University. Natural Science Series, 2014, no. 10 (121), pp. 9–16.
  7. Abduragimov, E.I., Abduragimova, P.E., and Gadzhieva T.Yu., Existence of a positive solution to a two-point boundary value problem for one fourth-order nonlinear ODE, Vestnik of Dagestan State University. Ser. 1: Natural Sciences, 2019, vol. 3, pp. 79–85.
  8. Reiss, E.L. Ordinary Differential Equations with Applications / E.L. Reiss, A.J. Callegari, D.S. Ahluwalia. — New York : Holt, Rinehart and Winston, 1976. — 400 p.
  9. Usmani, R.A. A uniqueness theorem for a boundary value problem / R.A. Usmani // Proc. Amer. Math. Soc. — 1979. — V. 77, № 3. — P. 329–335.
  10. Gupta, C.P. Existence and uniqueness theorems for a bending of an elastic beam equation / C.P. Gupta // Appl. Anal. — 1988. — V. 26. — P. 289–304.
  11. Aftabizadeh, A.R. Existence and uniqueness theorems for fourth-order boundary value problems / A.R. Aftabizadeh // J. Math. Anal. Appl. — 1986. — V. 116. — P. 415–426.
  12. Abduragimov, G.E., Abduragimova, P.E., and Kuramagomedova, M.M., On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of even order, Russian Universities Reports. Mathematics, 2021, vol. 136, no. 25, pp. 341–347.
  13. Abduragimov, G.E., Abduragimova, P.E., and Kuramagomedova, M.M., On the existence and uniqueness of a positive solution to a boundary value problem for a fourth-order nonlinear ordinary differential equation, Mathematical Notes of NEFU, 2022, vol. 4, no. 29, pp. 3–10.
  14. Krasnosel’skii, M.A. and Zabreiko, P.P., Geometricheskiye metody nelineynogo analiza (Geometric Methods of Nonlinear Analysis), Moscow: Nauka, 1975.
  15. Guo, D. Nonlinear Problems in Abstract Cones / D. Guo, V. Lakshmikantham. — Boston : Academic Press, 1988. — 275 p.
  16. Thomson, B.S. Elementary Real Analysis / B.S. Thomson, J.B. Bruckner, A.M. Bruckner. — 2nd ed. — ClassicalRealAnalysis.com, 2008. — 740 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).