A FULLY CONSERVATIVE FINITE DIFFERENCE SCHEME FOR THREE-DIMENSIONAL NAVIER–STOKES EQUATIONS IN CYLINDRICAL COORDINATES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The fully conservative finite volume discretization of the incompressible Navier–Stokes equations in cylindrical coordinates is constructed on a staggered grid. The proposed discretization ensures momentum conservation in a computational domain, and mass conservation within the control volumes for pressure, and velocity components. The energy conservation equation directly follows from the discrete momentum equation. Both conservative and non-conservative forms of convective terms are approximated. The proposed discrete counterpart of the vector Laplace operator is self-adjoint and negative definite.

About the authors

A. O Gusev

Keldysh Institute of Applied Mathematics of RAS

Email: aogus@mail.ru
Moscow, Russia

O. S Mazhorova

Keldysh Institute of Applied Mathematics of RAS

Email: olgamazhor@mail.ru
Moscow, Russia

References

  1. Fukagata, K. and Kasagi, N., Highly energy-conservative finite difference method for the cylindrical coordinate system, J. Comput. Phys., 2002, vol. 181, pp. 478–498.
  2. He, K., Seddighi, M., and He, S., DNS study of a pipe flow following a step increase in flow rate, Int. J. of Heat and Fluid Flow, 2016, vol. 57, pp. 130–141.
  3. Gelfgat, A.Y., Three-dimensional instability of axisymmetric flows: solution of benchmark problems by a loworder finite volume method, Int. J. for Numerical Methods in Fluid, 2007, vol. 54, pp. 269–294.
  4. Wang, B., Zhou, L., Wan, Z. [et. al.], Stability analysis of Rayleigh–Benard convection in a cylinder with internal heat generation, Phys. Rev. E, 2016, vol. 94, no. 1, art. 013108.
  5. Bessonov, O.A., Effect of crystal and crubicle rotation on the flow stability in the Czochralski model at low Prandtl numbers, Fluid Dynamics, 2016, vol. 51, pp. 469–477.
  6. Xiao, Q. and Derby, J., Three-dimensional melt flow in Czochralski oxide growth: high-resolution, massively parallel, finite element computations, J. of Crystal Growth, 1995, vol. 152, pp. 169–181.
  7. Harlow, F.H. and Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of Fluids, 1965, vol. 8, pp. 2182–2189.
  8. Samarsky, A.A. and Popov, Yu.P., Raznostnye methodi resheniya zadach gazovoy dinamici (Difference Methods for Solving Gas Dynamics Problems), Moscow: Nauka, 1992.
  9. Samarsky, A.A., Tishkin, V.F., Favorsky A.P., and Shashkov, M.Yu., Operator difference schemes, Differ. Uravn., 1981, vol. 17, no. 7, pp. 1317–1327.
  10. Lipnikov, K., Manzini, G., and Shashkov, M., Mimetic finite difference method, J. Comput. Phys., 2014, vol. 257, pp. 1163–1227.
  11. Barbosa, E. and Daube, O., A finite difference method for 3D incompressible flows in cylindrical coordinate, Computers and Fluids, 2005, vol. 34, pp. 950–971.
  12. Oud, G.T., van der Heul, D.R., Vuik, C., and Henkes, R.A.W.M., A fully conservative mimetic discretization of the Navier–Stokes equations in cylindrical coordinates with associated singularity treatment, J. Comput. Phys., 2016, vol. 325, pp. 314–337.
  13. Loyciansky, L.G., Mehanika zhidkosti i gaza (Fluid and Gas Mechanics), Moscow: Drofa, 2003.
  14. Arakawa, A., Computational design for long-term numerical integration of the equation of fluid motion: two dimensional incompressible flow, J. Comput. Phys., 1966, vol. 1, pp. 119–143.
  15. Friazinov, I.V., Conservativnye raznostnie shemy dlia uravninyi viazkoy neszhimarmoy zhidkosti v krivolyneynih ortogonalnyh coordinatah, Zhurnal Vichislitelnoy Matematiki i Matematicheskoy fiziki (J. Math. Math. Phys.), 1982, vol. 22, no. 5, pp. 1195–1207.
  16. Samarsky, A.A., Theory of Difference Schemes, New-York: Marcel Dekker, 1989.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).