Алгоритм подвижного окна для параметрической идентификации динамических систем с прямоугольными и эллипсоидными областями неопределённости параметров

Обложка

Цитировать

Полный текст

Аннотация

Решена задача параметрической идентификации динамических систем с прямоугольными и эллипсоидными областями неопределённости параметров для случая, когда экспериментальные данные заданы в виде интервалов. Состояние рассматриваемых динамических систем в каждый момент времени является параметрическим множеством. Построена целевая функция в пространстве областей неопределённости параметров, характеризующая степень отклонения параметрических множеств состояний от экспериментальных интервальных оценок. Для минимизации целевой функции разработан алгоритм подвижного окна, относящийся к градиентным методам. В его основе лежит алгоритм адаптивной интерполяции, позволяющий в рамках заданной области неопределённости параметров (окна) в явном виде получать параметрические множества состояний динамической системы. Продемонстрирована эффективность и работоспособность предлагаемого алгоритма.

Об авторах

А. Ю Морозов

Федеральный исследовательский центр ``Информатика и управление'' РАН;Московский авиационный институт (национальный исследовательский университет)

Email: morozov@infway.ru
Москва, Россия

Д. Л Ревизников

Федеральный исследовательский центр ``Информатика и управление'' РАН;Московский авиационный институт (национальный исследовательский университет)

Автор, ответственный за переписку.
Email: reviznikov@mai.ru
Москва, Россия

Список литературы

  1. Шенк Х. Теория инженерного эксперимента. М., 1972.
  2. Martyshov M.N., Emelyanov A.V., Demin V.A. et al. Multifilamentary character of anticorrelated capacitive and resistive switching in memristive structures based on (Co-Fe-B)x(LiNbO3)100-x nanocomposite // Phys. Rev. Appl. 2020. V. 14. № 3. P. 034016.
  3. Moore R. Interval Analysis. Englewood Cliffs, 1966.
  4. Moore R.E., Kearfott R.B., Cloud M.J. Introduction to Interval Analysis. Philadelphia, 2009.
  5. Шарый С.П. Конечномерный интервальный анализ. Новосибирск, 2019.
  6. Добронец Б.С. Интервальная математика. Красноярск, 2007.
  7. Xiao N., Fedele F., Muhanna R.L. Inverse problems under uncertainties-an interval solution for the beam finite element // 11th Intern. Conf. on Structural Safety \& Reliability. New York, 2013. P 1-8.
  8. Петрикевич Я.И. Структурно-параметрическая идентификация динамических объектов по интервальным исходным данным: дис.... канд. техн. наук. М., 2006.
  9. Дилигенская А.Н., Самокиш А.В. Параметрическая идентификация в обратных задачах теплопроводности в условиях интервальной неопределённости на основе нейронных сетей // Вестн. Самарского гос. техн. ун-та. 2020. Т. 28. № 4 (68). С. 6-18.
  10. Морозов А.Ю., Ревизников Д.Л. Интервальный подход к решению задач параметрической идентификации динамических систем // Дифференц. уравнения. 2022. Т. 58. № 7. С. 962-976.
  11. Морозов А.Ю., Ревизников Д.Л. Алгоритм адаптивной интерполяции на основе kd-дерева для численного интегрирования систем обыкновенных дифференциальных уравнений с интервальными начальными условиями // Дифференц. уравнения. 2018. Т. 54. № 7. С. 963-974.
  12. Морозов А.Ю., Ревизников Д.Л., Гидаспов В.Ю. Алгоритм адаптивной интерполяции на основе kd-дерева для решения задач химической кинетики с интервальными параметрами // Мат. моделирование. 2018. Т. 30. № 12. С. 129-144.
  13. Морозов А.Ю. Интерполяционный подход в задачах моделирования динамических систем с эллипсоидными оценками параметров // Тр. МАИ. 2022. № 124. С. 1-24.
  14. Смоляк С.А. Квадратурные и интерполяционные формулы на тензорных произведениях некоторых классов функций // Докл. АН СССР. 1963. Т. 148. № 5. С. 1042-1045.
  15. Bungatrz H-J., Griebel M. Sparse grids // Acta Numerica. 2004. V. 13. № 1. P. 147-269.
  16. Gerstner T., Griebel M. Sparse grids // Encyclopedia of Quantitative Finance / Ed. R. Cont. New York, 2010.
  17. Morozov A.Yu., Zhuravlev A.A., Reviznikov D.L. Sparse grid adaptive interpolation in problems of modeling dynamic systems with interval parameters // Mathematics. 2021. V. 9. P. 298.
  18. Морозов А.Ю., Ревизников Д.Л. Алгоритм адаптивной интерполяции на разреженных сетках для численного интегрирования систем обыкновенных дифференциальных уравнений с интервальными неопределённостями // Дифференц. уравнения. 2021. Т. 57. № 7. С. 976-987.
  19. Морозов А.Ю. Параллельный алгоритм адаптивной интерполяции на основе разреженных сеток для моделирования динамических систем с интервальными параметрами // Программная инженерия. 2021. Т. 12. № 8. С. 395-403.
  20. Демьянов В.Ф., Малоземов В.Н. Введение в минимакс. М., 1972.
  21. Евтушенко Ю.Г. Некоторые локальные свойства минимаксных задач // Журн. вычислит. математики и мат. физики. 1974. Т. 14. № 3. С. 669-679.
  22. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. М., 1985.
  23. Пантелеев А.В., Летова Т.А. Методы оптимизации в примерах и задачах. М., 2005.
  24. Sylvester J. J. A question in the geometry of situation // Quarterly J. of Math. 1857. V. 1. P. 79.
  25. Васильев Н.С. О численном решении экстремальных задач построения эллипсоидов и параллелепипедов // Журн. вычислит. математики и мат. физики. 1987. Т. 27. № 3. С. 340-348.
  26. Шор Н.З., Стеценко С.И. Алгоритм последовательного сжатия пространства для построения описанного эллипсоида минимального объёма // Исследование методов решения экстремальных задач. Киев, 1990. С. 25-29.
  27. Khachiyan L.G. Rounding of polytopes in the real number model of computation // Math. of Operations Research. 1996. V. 21. № 2. P. 307-320.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».