Forecasting the sectoral structure of population employment

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

All the labor market subjects that can influence the labor resources dynamics are interested in employment forecasts by labor market sectors. Such subjects are state employees and municipal employees, employers and workers. The statistical data aggregation degree affects the quality of the labor resources dynamics forecasting. Each labor market indicator combines a set of detailed indicators in a high degree of aggregation case. When building the trends it is impossibile to take into account information on the detailed indicators trends. The labor market indicators for each specific year don’t contain information about the interaction with each other. This fact also negatively affects the forecast quality. The article discusses the use of a balance mathematical model of the labor resources dynamics, which relates the labor market sectoral indicators, to define the intersectoral movements indicators. The authors consider a calculating labor market indicators method that uses only statistical data on sectoral employment and unemployment. Thus, the statistical data on the labor resources dynamics provided by the Federal State Statistics Service is a sufficient condition for the Russian Federation labor market detailing using intersectoral movements’ indicators. The paper shows how a set of intersectoral movements indicators allows building the forecast values of these indicators and using them to calculate the forecast values of labor market indicators. The article considers examples of building employment estimates by Russian Federation economy sectors for 2011–2016 and 2019. The entry into force of the All-Russian classifier of types of economic activity second edition in 2017 is the reason for choosing such research intervals. The purpose of these examples was to determine the impact of the detailed labor market indicators of the sectoral employment estimates reliability. The authors compared the forecast obtained directly from labor market indicators with the forecasts obtained from intersectoral movements indicators. Intersectoral movements indicators are the results of applying balance models with varying degrees of detail. The reliability tables presented in this work to assess the forecasting quality indicate that the detailing of the sectoral employment indicators by using the balance model can increase reliability of the forecast.

Full Text

Restricted Access

About the authors

Michael I. Drobotenko

Kuban State University

Email: emm@cemi.rssi.ru
Russian Federation, Krasnodar

Artyom P. Nevecherya

Kuban State University

Author for correspondence.
Email: emm@cemi.rssi.ru
ORCID iD: 0000-0001-6736-4691
Russian Federation

References

  1. Дроботенко М.И., Невечеря А.П. (2021). Прогнозирование динамики трудовых ресурсов на многоотраслевом рынке труда // Компьютерные исследование и моделирование. Т. 13. Вып. 1. С. 235–250.
  2. Единак Е.А., Коровкин А.Г. (2014). Построение баланса территориального движения занятого населения (на примере федеральных округов РФ) // Проблемы прогнозирования. № 3 (144). С. 72–85.
  3. Коровкин А.Г. (2001). Динамика занятости и рынка труда: вопросы макроэкономического анализа и прогнозирования. М.: МАКС Пресс.
  4. Коровкин А.Г., Единак Е.А., Королев И.Б. (2017). Прогнозирование численности и структуры населения на базе балансового подхода. В сб.: Демографический потенциал стран ЕАЭС. Екатеринбург: Институт экономики УрО РАН. С. 297–303.
  5. Невечеря А.П. (2016a). Исследование динамики трудовых ресурсов на основе многоотраслевой математической модели рынка труда // Экономика и математические методы Т. 52. Вып. 2. С. 129–140
  6. Невечеря А.П. (2016b). Численный алгоритм в задаче самоорганизации трудовых ресурсов // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ). № 04(118). С. 1333–1349.
  7. Невечеря А.П. (2021). Задача прогнозирования динамики трудовых ресурсов // Наука. Новое поколение. Успех. Т. 2. С. 24–26.
  8. Россия в цифрах. 2021: Краткий статистический сборник (2021). М.: Федеральная служба государственной статистики.
  9. Тихонов А. Н., Арсенин В. Я. (1979). Методы решения некорректных задач. М: Наука.
  10. Armstrong J.S. (1984). Forecasting by extrapolation: Conclusions from 25 years of research. Interfacess. No. 003. 20 p.
  11. Bakens J., Fouarge D., Peeters T. (2018). Labour market forecasts by education and occupation up to 2022. ROA. ROA Technical Reports, 14, 6, 52–66.
  12. Borghans L., De Grip A., Heijke H. (1996). Labor market information and the choice of vocational specialization. Economics of Education Review, 15 (1), 59–74.
  13. Cörvers F., Heijke H. (2005). Forecasting the labour market by occupation and education: Some key issues. Maastricht: Research centrum voor Onderwijs en Arbeidsmarkt.
  14. Key indicators of the labour market. Ninth edition. (2016). Geneva: International labour office.
  15. Knobel C., Kriechel B., Schmid A. (2008). Regional forecasting on labour markets. Munich: Rainer Hampp Verlag.
  16. Scott J., Marshall G. (2009). A dictionary of sociology. Oxford: Oxford University Press.
  17. Tsakalozos N., Konstantinos D., Scott R. (2011). Signal extrapolationusing empirical mode decomposition with financial applications. CASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, 5744–5747.
  18. Wilkinson F. (1981). The dynamics of labour market segmentation. NYC: Academic press.

Copyright (c) 2023 Ekonomika i matematicheskie metody

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».