Analysis of the influence of heterogeneous expectations of economic agents on the stability of general equilibrium models with an open economy

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The purpose of the publication is to study the influence of bounded rationality of agents on the ability of economic authorities to choose alternative policy rules that stabilize the dynamics of the relevant significant macroeconomic variables by simultaneously analyzing the entire range of model parameters. The scientific novelty lies in the fact that models with an open economy are analyzed, in which economic agents interact with the outside world. The article evaluates and compares behavioral neo-Keynesian models obtained with two alternative ways of introducing heterogeneous expectations. It is assumed that agents can be either short-sighted with a short-term forecast, or far-sighted forecasters. The difference does not matter when the agents have rational expectations, but it does matter when some of them form beliefs about the future according to some heuristics. Bayesian estimates based on the data of the Russian economy show that the behavioral model based on short-term forecasts is better in agreement with empirical data than the model based on long-term forecasts and even compared to the model with rational expectations of agents. Stability and stability analysis was carried out using a numerical procedure — Monte Carlo Filtration Mapping (MCF). This procedure generalizes and supplements the results obtained for a more limited set of parameters of low-dimensional models in which agents do not interact with the outside world. MCF-analysis shows that incorporating heterogeneous expectations reduces the stability and robustness of models. At the same time, a model based on predictors of long-term forecasting is less stable compared to models of short-term forecasting and with rational expectations of agents. An important result is a significant proportion of areas with unstable behavior of the studied models with heterogeneous expectations of agents, in which solutions are characterized by an explosive nature. With the help of Smirnov–Kolmogorov statistics, significant parameters were identified that determine the deterministic behavior of all analyzed models. An interesting result is: the response of the interest rate to changes in the output gap and changes in the real effective exchange rate does not affect the deterministic behavior of the models under study. All obtained results are confirmed by a posteriori Bayesian estimates for these parameters. The findings provide guidance to economists who study the processes of expectation formation with the help of microdata.

Full Text

Restricted Access

About the authors

Leonid A. Serkov

Perm National Research Polytechnic University

Email: emm@cemi.rssi.ru

Старший научный сотрудник

Bouvet Island, Perm, Komsomolsky pr., 29

Sergey S. Krasnykh

Perm National Research Polytechnic University

Author for correspondence.
Email: emm@cemi.rssi.ru
ORCID iD: 0000-0002-2692-5656

Младший научный сотрудник

Russian Federation, Perm, Komsomolsky pr., 29

References

  1. Малаховская О.А. (2016). Использование моделей DSGE для прогнозирования: есть ли пер-спектива // Вопросы экономики. № 12. С. 129–146. doi: 10.32609/0042-8736-2016-12-129-146
  2. Серков Л.А., Елизаров Д.Б. (2016). Влияние непредвиденных шоков на поведение макро-экономических показателей в рамках гипотезы об адаптивном обучении агентов // Из-вестия УрГЭУ. №2 . С. 135–150.
  3. Уикенс М. (2015). Макроэкономическая теория: подход динамического общего равновесия. М.: РАНХиГС.
  4. Adam K. (2007). Optimal monetary policy with imperfect common knowledge. Journal of Mone-tary Economics, 54(2), 267–301. doi: 10.1016/j.jmoneco.2005.08.020
  5. An S., Schorfheide F. (2007). Bayesian analysis of DSGE models. Econometric Reviews, 26, 113–172. doi: 10.1080/07474930701220071
  6. Andrade P., Bihan H. le (2013). Inattentive professional forecasters. Journal of Monetary Econom-ics, 60 (8), 967–982. doi: 10.1016/j.jmoneco.2013.08.005
  7. Blanchard O., Kahn C. (1980). The solution of linear difference models under rational expecta-tions. Econometrica, 48 (5), 1305–1311. doi: 10.2307/1912186
  8. Branch W. (2004). The theory of rationally heterogeneous expectations: Evidence from survey data on inflation expectations. The Economic Journal, 114 (497), 592–621. doi: 10.1111/j.1468-0297.2004.00233.x
  9. Branch W., McGough B. (2009). A new Keynesian model with heterogeneous expectations. Jour-nal of Economic Dynamics and Control, 33 (5), 1036–1051.
  10. Burnside C. (1998). Detrending and business cycle facts: A comment. Journal of Monetary Eco-nomics, 41, 513–532.
  11. Calvo G. (1983). Staggered prices in a utility maximizing framework. Journal of Monetary Eco-nomics, 12, 383–398.
  12. Christiano L., Eichenbaum M., Evans C. (2005). Nominal rigidities and the dynamic effects of a shock to monetary policy. Journal of Political Economy, 103, 51–78.
  13. Cornea-Madeira A., Hommes C., Massaro D. (2019). Behavioral heterogeneity in U.S. inflation dynamics. Journal of Business and Economic Statistics, 37 (2), 288–300. doi: 10.1080/07350015.2017.1321548
  14. Del Negro M., Schorfheide F. (2008). Forming priors for DSGE models (and how it affects the as-sessment of nominal rigidities). Journal of Monetary Economics, 55 (7), 1191–1208.
  15. Di Bartolomeo G., Di Pietro M., Giannini B. (2016). Optimal monetary policy in a New Keynes-ian model with heterogeneous expectations. Journal of Economic Dynamics and Control, 73, 373–387. doi: 10.1016/j.jedc.2016.10.003
  16. Diks C., Weide R. van der (2005). Herding, a-synchronous updating and heterogeneity in memory in a CBS. Journal of Economic Dynamics and Control, 29 (4), 741–763.
  17. Galí J., Monacelli T. (2005). Monetary policy and exchange rate volatility in a small open econo-my. Review of Economic Studies, 3, 707–734.
  18. Gasteiger E. (2014). Heterogeneous expectations, optimal monetary policy, and the merit of policy inertia. Journal of Monetary, Credit and Banking, 46 (7), 1533–1554. doi: 10.1111/jmcb.12149
  19. Geweke J. (1999). Using simulation methods for Bayesian econometric models: Inference. Econo-metric Reviews, 18, 1–126.
  20. Gorodnichenko Y., Ng S. (2010). Estimation of DSGE models when the data are persistent. Jour-nal of Monetary Economics, 57, 325–340.
  21. Hommes C. (2021). Behavioral and experimental macroeconomics and policy analysis: A complex systems approach. Journal of Economic Literature, 1 (59), 149–219. doi: 10.1257/jel.20191434
  22. Hommes C. (2011). The heterogeneous expectations hypothesis: Some evidence from the lab. Journal of Economic Dynamics and Control, 35 (1), 1–24.
  23. Kydland F., Prescott E. (1982). Time to build and aggregate fluctuations. Econometrica, 50 (6), 1345–1370.
  24. Massaro D. (2013). Heterogeneous expectations in monetary DSGE models. Journal of Economic Dynamics and Control, 37 (3), 680–692.
  25. Muth J.F. (1961). Rational expectations and the theory of price movements. Econometrica, 29, 315–335.
  26. Preston B. (2006). Adaptive learning, forecast-based instrument rules and monetary policy. Journal of Monetary Economics, 53 (3), 507–535.
  27. Ratto M. (2008). Analysing DSGE models with global sensitivity analysis. Computational Eco-nomics, 31 (2), 115–139.
  28. Saltelli A., Tarantola C., Campolongo F., Ratto M. (2004). Sensitivity analysis in practice: A guide to assessing scientific models. Chichester: John Wiley and Sons.
  29. Sargent T., Wallace N. (1976). Rational expectation and the theory of economic policy. Journal of Monetary Economics, 2, 169–183.
  30. Sims C. (2002). Solving rational expectations models. Computational Economics, 20, 1–20.

Copyright (c) 2023 Ekonomika i matematicheskie metody

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».