Regional Effects of Fiscal Policy: Analysis with Spatial Vector Autoregressive Models

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper attempts to assess the impact of fiscal policy measures conducted in Russian Federation units on gross regional product. For this purpose, we use panel data for 80 Russian regions for 2005–2020. As a method for assessing the response of GRP to the shock of government expenditures, we propose to use a spatial vector autoregression model consisting of three equations for the following endogenous variables: GRP, consolidated budget expenditures, tax revenues. The model also includes a set of exogenous factors: oil prices, MIACR interest rate, expenditures of the Russian Pension Fund. Additionally, we account for the structure of the regional economy. The advantage of the model is the ability to simultaneously consider spatial effects using the contiguity-based matrix and evaluate the impulse response function, while the Cholesky decomposition is used for shock identification. Overall, we estimated 3 SpVAR specifications and considered shocks of government expenditures for 7 categories of regional budgets. The main result of the study is the peak and cumulative values ​​of IRF for 2 and 3 years, which reflect the evolution of the GRP response to an exogenous shock of expenditures over time. For all specifications of the model, the greatest positive effect on GRP is observed for the shock of expenditures on the national economy and education. Depending on the specification, over 3 years after the shock of increasing expenditures by 1%, an expected increase in GRP varies from 0.053 to 0.1% and from 0.051 to 0.1%, respectively.

Sobre autores

A. Demyanenko

National Research University Higher School of Economics

Email: ademyanenko@hse.ru
Moscow, Russia

Bibliografia

  1. Власов С. А., Дерюгина Е. Б. (2018). Фискальные мультипликаторы в России // Журнал Новой экономической ассоциации. № 2 (38). С. 104–119. [Vlasov S. A., Deryugina E. B. (2018). Fiscal multipliers in Russia. Journal of the New Economic Association, 2 (38), 104–119 (in Russian).]
  2. Вотинов А. И., Станкевич И. П. (2017). VAR-подход к оценке эффективности мер фискального стимулирования экономики // Финансовый журнал. Т. 40. № 6. С. 64–74. [Votinov A. I., Stankevich I. P. (2017). VAR approach to efficiency evaluation of fiscal economy encouragement measures. Financial Journal, 6 (40), 64–74 (in Russian).]
  3. Демидова О. А. (2021). Методы пространственной эконометрики и оценка эффективности государственных программ // Прикладная эконометрика. № 64. С. 107–134. [Demidova O. A. (2021). Methods of spatial econometrics and evaluation of government programs effectiveness. Applied Econometrics, 64, 107–134 (in Russian).]
  4. Демидова О. А., Каяшева Е. В., Демьяненко А. В. (2021). Государственные расходы на здравоохранение и экономический рост в России: региональный аспект // Пространственная экономика. T. 17. № 1. С. 97–122. [Demidova O. A., Kayasheva E. V., Demyanenko A. V. (2021). Government spending on healthcare and economic growth in Russia: A regional aspect. Spatial Economics, 17 (1), 97–122 (in Russian).]
  5. Зяблицкий И. Е. (2020). Оценка фискальных мультипликаторов в российской экономике // Экономический журнал Высшей школы экономики. Т. 24. № 2. С. 268–294. [Zyablitskiy I. E. (2020). Estimating fiscal multipliers in Russian economy. HSE Economic Journal, 24 (2), 268–294 (in Russian).]
  6. Каменских М. В., Иванова Н. Ю. (2011). Эффективность государственных расходов в России // Экономическая политика. № 1. С. 176–192. [Kamenskih M. V., Ivanova N.Yu. (2011). Efficiency of government expenditures in Russia. Economic Policy, 1, 176–192 (in Russian).]
  7. Регионы России. Социально-экономические показатели (2005–2022). М.: Росстат. [Regions of Russia. Socio-economic indicators (2005–2022). Moscow: Rosstat (in Russian).]
  8. Armingeon K. (2012). The politics of fiscal responses to the crisis of 2008–2009. Governance, 25, 4, 543–565.
  9. Auerbach A. J., Gorodnichenko Y., Murphy D. (2019). Local fiscal multipliers and fiscal spillovers in the United States (No. 25457). National Bureau of Economic Research. doi: 10.3386/w25457
  10. Batini N., Eyraud L., Forni L., Weber A. (2014). Fiscal multipliers: Size, determinants, and use in macroeconomic projections. International Monetary Fund.
  11. Blanchard O., Perotti R. (2002). An empirical characterization of the dynamic effects of changes in government spending and taxes on output. The Quarterly Journal of Economics, 117, 4, 1329–1368.
  12. Blanchard O. J., Watson M. W. (1986). Are business cycles all alike? In: The American business cycle: Continuity and change. Chicago: University of Chicago Press.
  13. Boone C., Dube A., Kaplan E. (2014). The political economy of discretionary spending: Evidence from the American Recovery and Reinvestment Act. Brookings Papers on Economic Activity, 375–428.
  14. Brandeis C., Lambert D. M. (2014). Projecting county pulpwood production with historical production and macro-economic variables. Journal of Forest Economics, 20, 3, 305–315.
  15. Čapek J., Crespo Cuaresma J. (2020). We just estimated twenty million fiscal multipliers. Oxford Bulletin of Economics and Statistics, 82, 3, 483–502.
  16. Coenen G., Erceg C. J., Freedman C., Furceri D., Kumhof M., Lalonde R. et al. (2012). Effects of fiscal stimulus in structural models. American Economic Journal: Macroeconomics, 4, 1, 22–68.
  17. Corsetti G., Meier A., Müller G. J. (2012). What determines government spending multipliers. Economic Policy, 27, 72, 521–565.
  18. Devarajan S., Swaroop V., Zou H. F. (1996). The composition of public expenditure and economic growth. Journal of Monetary Economics, 37, 2, 313–344.
  19. Dupor B., Guerrero R. (2017). Local and aggregate fiscal policy multipliers. Journal of Monetary Economics, 92, 16–30.
  20. Forni M., Gambetti L. (2016). Government spending shocks in open economy VARs. Journal of International Economics, 99, 68–84.
  21. Giannini M., Fiorelli C., Martini B. (2022). Ageing in the labour market: A spatial VAR approach. Spatial Economic Analysis, 17, 2, 538–556.
  22. Hagedorn M., Manovskii I., Mitman K. (2019). The fiscal multiplier (No. 25571). National Bureau of Economic Research. doi: 10.3386/w25571
  23. Harris R. D.F., Tzavalis E. (1999). Inference for unit roots in dynamic panels where the time dimension is fixed. Journal of Econometrics, 91, 2, 201–226.
  24. Im K. S., Pesaran M. H., Shin Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115, 1, 53–74.
  25. Kuethe T. H., Pede V. O. (2011). Regional housing price cycles: A spatio-temporal analysis using US state-level data. Regional Studies, 45, 5, 563–574.
  26. Lee L. F., Yu J. (2010). Estimation of spatial autoregressive panel data models with fixed effects. Journal of Econometrics, 154, 2, 165–185.
  27. Nakamura E., Steinsson J. (2014). Fiscal stimulus in a monetary union: Evidence from US regions. American Economic Review, 104, 3, 753–792.
  28. Raga S. (2022). Fiscal multipliers: A review of fiscal stimulus options and impact on developing countries. Ottawa: IDRC. Available at: https://set.odi.org/wp-content/uploads/2022/01/Fiscal-multipliers-review.pdf
  29. Ramey V. A. (2011). Identifying government spending shocks: It’s all in the timing. The Quarterly Journal of Economics, 126, 1, 1–50.
  30. Ramey V. A. (2016). Handbook of macroeconomics. Amsterdam: Elsevier.
  31. Romer C. D., Romer D. H. (2010). The macroeconomic effects of tax changes: Estimates based on a new measure of fiscal shocks. American Economic Review, 100, 3, 763–801.
  32. Yu J., Jong R. de, Lee L. F. (2008). Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large. Journal of Econometrics, 146, 1, 118–134.

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».