Solid State Ionics 2011–2021: Trends and Prospects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the analysis of publication activity, trends in the development of the main sections of solid state ionics have been formulated by using expertly curated abstract & citation database of peer-reviewed scientific literature Scopus. Promising areas of research related to in situ and operando experiments, artificial intelligence (machine learning), and the design of new devices using superionic materials are indicated.

About the authors

A. K. Ivanov-Schitz

Shubnikov Institute of Crystallography, Russian Academy of Sciences, Federal Research Center “Crystallography and Photonics"; MGIMO University

Author for correspondence.
Email: alexey.k.ivanov@gmail.com
Moscow, 117333 Russia; Moscow, 119454 Russia

References

  1. Иванов-Шиц, А.К., Мурин, И.В. Ионика твердого тела. Т. 1. СПб.: Изд-во СПбГУ, 2000. 616 с. [Ivanov-Schitz, A.K. and Murin, I.V., Solid State Ionics, V.1 (in Russian), S.-Petersburg: S.-Petersburg Univ. Press, 2000. 616 p.]
  2. Takahashi, T., Yamamoto, O., Tsukuba, K., and Baba, A., Electrical Conductivity of Solid Electrolyte (Part VI). Electrical Conductivity in a Ag2S–HgI2 System, Denki kagaku, 1967, vol. 35, p. 32.
  3. Knauth, Ph. and Tuller, H.L., Solid-State Ionics: Roots, Status, and Future Prospects, J. Amer. Ceram. Soc., 2002, vol. 85, p. 1654.
  4. Kim, S., Yamaguchi, S., and Elliott, J.A., Solid-State Ionics in the 21st Century: Current Status and Future Prospects, MRS Bull., 2009, vol. 34, p. 900.
  5. Funke, K., Solid State Ionics: from Michael Faraday to green energy—the European dimension, Sci. and Technol. Adv. Mater., 2013, vol.14, p. 043502. https://doi.org/10.1088/1468-6996/14/4/043502
  6. Terabe, K., Tsuchiya, T., Tsuruoka,T., Kim, S.-J., and Aono, M., Current Progress of Solid State Ionics on Information and Communication Device Technology, Ext. Abs. the 17th Int. Workshop on Junction Technology, 2017, p. S4-1.
  7. Yamamoto, O., Solid state ionics: a Japan perspective, Sci. and Technol. Adv. Mater., 2017, vol. 18, p. 504. https://doi.org/10.1080/14686996.2017.1328955
  8. Иванов-Шиц, А.К., Мурин, И.В. Ионика твердого тела. Т. 2. СПб.: Изд-во СПбГУ, 2010. 1000 с. [Ivanov-Schitz, A.K. and Murin, I.V., Solid State Ionics, V. 2 (in Russian), S.-Petersburg: S.-Petersburg Univ. Press, 2010. 1000 p.]
  9. https://www.scopus.com/.
  10. https://www.elsevier.com/solutions/scopus/how-scopus-works.
  11. Син, В., Ковалев, М. Китай строит экономику знаний. Вестник ассоциации белорусских банков. 2015. № 7. С. 3.
  12. Беляков, Г.П., Беляков, С.А., Шпак, А.С. Опыт КНР по реформированию системы стратегического планирования и управления научно-технологическим развитием. Экономические отношения. 2019. Т. 9. С. 1575. DOI
  13. Рейтинг ведущих стран мира по затратам на науку. Институт статистических исследований и экономики знаний, Дата выпуска 24.07.2018, https://issek.hse.ru/mirror/pubs/share/221869863.
  14. Наука России в 10 цифрах. Институт статистических исследований и экономики знаний, Новости, Февраль 2021, https://issek.hse.ru/news/442044357.html.
  15. Уваров, Н.Ф. Композиционные твердые электролиты, Новосибирск, Изд. СО РАН, 2008. 258 с.
  16. Сомов, С.И. Частное сообщение.
  17. Stangl, A., Muñoz-Rojas, D., and Burriel, M., In situ and operando characterisation techniques for solid oxide electrochemical cells: recent advances, J. Phys. Energy, 2021, vol. 3, p. 012001.
  18. Li, X., Wang, H.-Y., Yang, H., Cai, W., Liu, S., and Liu, B., In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion, Small Methods, 2018, vol. 2, p. 1700395.
  19. Meyer, Q., Zeng, Y., and Zhao, C., In situ and operando characterization of proton exchange membrane fuel cells, Adv. Mater., 2019, vol. 31, p. 1.
  20. Abakumov, A.M., Fedotov, S.S., Antipov, E.V., and Tarascon, J.-M., Solid state chemistry for developing better metal-ion batteries, Nature Commun., 2020, vol. 11, p. 4976. https://doi.org/10.1038/s41467-020-18736-7
  21. Yamada, T., Morita, K., Kume, K., Yoshikawa, H., and Awaga, K., The solid-state electrochemical reduction process of magnetite in Li batteries: in situ magnetic measurements toward electrochemical magnets, J. Mater. Chem. C, 2014, vol. 2, p. 5183.
  22. Agarkov, D.A., Burmistrov, I.N., Eliseeva, G.M., Ionov, I.V., Rabotkin, S.V., Semenov, V.A., Solovyev, A.A., Tartakovskii, I.I., and Bredikhin, S.I., Comparison of in situ Raman Studies of SOFC with Thick Single-crystal and Thin-film Magnetron Sputtered Membranes, Solid State Ionics, 2020, vol. 344, p. 115091. https://doi.org/10.1016/j.ssi.2019.115091
  23. Gershinsky, G., Bar, E., Monconduit, L., & Zitoun, D., Operando electron magnetic measurements of Li-ion batteries, Energy Environ. Sci., 2014, vol. 7, p. 2012.
  24. Drozhzhin, O.A., Tereshchenko, I.V., Emerich, H., Antipov, E.V., Abakumov, A.M., and Chernyshov, D., An electrochemical cell with sapphire windows for operando synchrotron X-ray powder diffraction and spectroscopy studies of high-power and high-voltage electrodes for metal-ion batteries, J. Synchrotron Rad., 2018, vol. 25, p. 468. https://doi.org/10.1107/S1600577517017489
  25. Guo, H., Wang, Q., Stuke, A., Urban, A., and Artrith, N., Accelerated Atomistic Modeling of Solid-State Battery Materials With Machine Learning, Front. Energy Res., 2021. https://doi.org/10.3389/fenrg.2021.695902
  26. Terabe, K., Tsuchiya, T., and Tsuruoka, T., Solid state ionics for the development of artificial intelligence components, Japan J. Appl. Phys., 2022, vol. 61, p. SM0803. https://doi.org/10.35848/1347-4065/ac64e5
  27. Liu, Y., Guo, B., Zou, X., Li, Y., and Shi, S., Machine Learning Assisted Materials Design and Discovery for Rechargeable Batteries, Energy Storage Mater., 2020, https://doi.org/10.1016/j.ensm.2020.06.033
  28. Lv, C., Zhou, X., Zhong, L., Yan, C., Srinivasan, M., Seh, Z.W., Liu, C., Pan, H., Li, S., Wen, Y., and Yan, Q., Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithium-Ion Batteries, Adv. Mater., 2021, N.2101474. https://doi.org/10.1002/adma.202101474
  29. Gao, T. and Lu, W., Machine learning toward advanced energy storage devices and systems, iScience, 2021, vol. 24, p. 101936. https://doi.org/10.1016/j.isci.2020.101936
  30. Ling, C., A review of the recent progress in battery informatics, npj Computational Materials, 2022, vol. 8, p. 33. https://doi.org/10.1038
  31. Miwa, K. and Asahi, R., Molecular dynamics simulations of lithium superionic conductor Li10GeP2S12 using a machine learning potential, Solid State Ionics, 2021, vol. 361, p. 115567. https://doi.org/10.1016/j.ssi.2021.115567
  32. Kahle, L., Marcolongo, A., and Marzari, N., High-throughput computational screening for solid-state Li-ion conductors, Energy & Environmental Science, 2020, vol. 13. https://doi.org/10.1039/C9EE02457C
  33. Chen, Y.-T., Duquesnoy, M., Tan, D.H.S., Doux, J.-M., Yang, H., Deysher, G., Ridley, P., Franco, A.A., Meng, Y.S., and Chen, Z., Fabrication of High-Quality Thin Solid-State Electrolyte Films Assisted by Machine Learning, ACS Energy Lett., 2021, vol. 6, p. 1639. https://doi.org/10.1021/acsenergylett.1c00332
  34. Sendek, A.D., Cubuk, E.D., Antoniuk, E.R., Cheon, G., Cui, Y., and Reed, E.J., Machine Learning-Assisted Discovery of Solid Li-Ion Conducting Materials, Chem. Mater., 2019, vol. 31, p. 342. https://doi.org/10.1021/acs.chemmater.8b03272
  35. Zhao, Y., Schiffmann, N., Koeppe, A., Brandt, N., Bucharsky, E.C., Schell, K.G., Selzer, M., and Nestler, B., Machine Learning Assisted Design of Experiments for Solid State Electrolyte Lithium Aluminum Titanium Phosphate, Front. Mater., 2022, vol. 9, p. 821817. https://doi.org/10.3389/fmats.2022.821817
  36. Watanabe, S., Li, W., Jeong, W., Lee, D., Shimizu, K., Mimanitani, E., Ando, Y., and Han, S., High-dimensional neural network atomic potentials for examining energy materials: some recent simulations, J. Phys. Energy, 2021, vol. 3, p. 012003.
  37. Zhang, X., Tang, B., and Zhou, Z., Unsupervised machine learning accelerates solid electrolyte discovery, Green Energy & Environment, 2019. https://doi.org/10.1016/j.gee.2019.12.003
  38. Zhang, Y., He, X., Chen, Z., Bai, Q., Nolan, A.M., Roberts, C.A., Banerjee, D., Matsunaga, T., Mo, Y., and Ling, C., Unsupervised discovery of solid-state lithium ion conductors, Nature Commun., 2019, vol. 10, Article number: 5260.
  39. Louis, S.-Y., Siriwardane, E.M.D., Joshi, R.P., Omee, S.S., Kumar N., and Hu, J., Accurate Prediction of Voltage of Battery Electrode Materials Using Attention-Based Graph Neural Networks, ACS Appl. Mater. Interfaces, 2022, vol. 14, p. 26587. https://doi.org/10.1021/acsami.2c00029
  40. Bhowmik, A., Castelli, I.E., Garcia-Lastra, J.M., Jørgensen, P.B., Winther, O., and Vegge, T., A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning, Energy Storage Mater., 2019, vol. 21, p. 446. https://doi.org/10.1016/j.ensm.2019.06.011
  41. Lu, J., Xiong, R., Tian, J., Wang, C., Hsu, C.-W., Tsou, N.-T., Sun, F., and Li, J., Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning, Energy Storage Mater., 2022, vol. 50, p. 139. https://doi.org/10.1016/j.ensm.2022.05.007
  42. Shao, Z.-Y., Huang, H.-M., and Guo, X., Optimizing linearity of weight updating in TaOx-based memristors by depression pulse scheme for neuromorphic computing, Solid State Ionics, 2021, vol. 370, p. 115746.
  43. Manikandan, J., Tsuchiya, T., Takayanagi, M., Kawamura, K., Higuchi, T., Terabe, K., and Jayavel, R., Substrate effect on the neuromorphic function of nanoionics-based transistors fabricated using WO3 thin film, Solid State Ionics, 2021, vol. 364, p. 115638.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (156KB)
3.

Download (135KB)
4.

Download (648KB)
5.

Download (34KB)
6.

Download (195KB)
7.

Download (134KB)
8.

Download (91KB)
9.

Download (65KB)
10.

Download (51KB)
11.

Download (145KB)
12.

Download (48KB)
13.

Download (47KB)
14.

Download (632KB)

Copyright (c) 2023 А.К. Иванов-Шиц

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».