Электрокристаллизация металлов в каналах пористых пленок анодного оксида алюминия: реальная структура темплата и количественная модель электроосаждения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Предложена методика аналитического описания транзиентов тока при темплатном электроосаждении металла в пористые пленки анодного оксида алюминия (АОА). Проведено темплатное электроосаждение меди и золота. На примере электроосаждения меди показано, что экспериментальные данные количественно согласуются с расчетными значениями тока без использования подгоночных параметров. Измерены характеристики структуры пленок АОА, включая конусность пор и количество тупиковых каналов, исследовано влияние этих особенностей на процесс темплатного электроосаждения.

Об авторах

А. А. Ноян

Московский физико-технический институт; Московский государственный университет им. М.В. Ломоносова, Химический факультет

Email: alekseynoyan@gmail.com
Россия, Долгопрудный; Россия, Москва

И. В. Колесник

Московский государственный университет им. М.В. Ломоносова, Химический факультет; Московский государственный университет им. М.В. Ломоносова, Факультет наук о материалах

Email: kirill@inorg.chem.msu.ru
Россия, Москва; Россия, Москва

А. П. Леонтьев

Московский государственный университет им. М.В. Ломоносова, Химический факультет

Email: kirill@inorg.chem.msu.ru
Россия, Москва

К. С. Напольский

Московский государственный университет им. М.В. Ломоносова, Химический факультет; Московский государственный университет им. М.В. Ломоносова, Факультет наук о материалах

Автор, ответственный за переписку.
Email: kirill@inorg.chem.msu.ru
Россия, Москва; Россия, Москва

Список литературы

  1. Stepniowski, W.J. and Salerno, M., Fabrication of nanowires and nanotubes by anodic alumina template-assisted electrodeposition, Book chapter in Manufacturing Nanostructures, One Central Press, 2014, p. 321.
  2. Sulka, G.D., Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing, in: Nanostructured Materials in Electrochemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008, p. 1. https://doi.org/10.1002/9783527621507.ch1
  3. Napolskii, K.S., Eliseev, A.A., Yesin, N.V., Lukashin, A.V., Tretyakov, Y.D., Grigorieva, N.A., Grigoriev, S.V., and Eckerlebe, H., Ordered arrays of Ni magnetic nanowires: Synthesis and investigation, Physica E., 2007, vol. 37, nos. 1–2, p. 178. https://doi.org/10.1016/j.physe.2006.08.018
  4. Lee, J.S., Gu, G.H., Kim, H., Jeong, K.S., Bae, J., and Suh, J.S., Growth of carbon nanotubes on anodic aluminum oxide templates: fabrication of a tube-in-tube and linearly joined tube, Chem. Mater., 2001, vol. 13, no. 7, p. 2387. https://doi.org/10.1021/cm0014076
  5. Liu, L., Yoo, S.H., Lee, S.A., and Park, S., Wet-Chemical Synthesis of Palladium Nanosprings, Nano Lett., 2011, vol. 11, no. 9, p. 3979. https://doi.org/10.1021/nl202332x
  6. Feng, H., Elam, J.W., Libera, J.A., Pellin, M.J., and Stair, P.C., Oxidative dehydrogenation of cyclohexane over alumina-supported vanadium oxide nanoliths, J. Catal., 2010, vol. 269, no. 2, p. 421. https://doi.org/10.1016/j.jcat.2009.11.026
  7. Li, S.J., Li, J., Wang, K., Wang, C., Xu, J.J., Chen, H.Y., Xia, X.H., and Huo, Q., A nanochannel array-based electrochemical device for quantitative label-free DNA analysis, ACS Nano, 2010, vol. 4, no. 11, p. 6417. https://doi.org/10.1021/nn101050r
  8. Xu, C.L., Li, H., Zhao, G.Y., and Li, H.L., Electrodeposition and magnetic properties of Ni nanowire arrays on anodic aluminum oxide/Ti/Si substrate, Appl. Surf. Sci., 2006, vol. 253, no. 3, p. 1399. https://doi.org/10.1016/j.apsusc.2006.02.056
  9. Davydov, D.N., Sattari, P.A., AlMawlawi, D., Osika, A., Haslett, T.L., and Moskovits, M., Field emitters based on porous aluminum oxide templates, J. Appl. Phys., 1999, vol. 86, p. 3983. https://doi.org/10.1063/1.371317
  10. Колмычек, И.А., Малышева, И.В, Новикова, В.Б., Майдыковский, А.И., Леонтьев, А.П., Напольский, К.С., Мурзина, Т.В. Оптические свойства гиперболических метаматериалов (миниобзор). ЖЭТФ. 2021. № 11–12. С. 727. https://doi.org/10.31857/S1234567821230026
  11. Kolmychek, I.A., Malysheva, I.V., Novikov, V.B., Leontiev, A.P., Napolskii, K.S., and Murzina, T.V., Phase-matched optical second harmonic generation in a hyperbolic metamaterial based on silver nanorods, Phys. Rev. B, 2020, vol. 102, no. 24. https://doi.org/10.1103/PhysRevB.102.241405
  12. Valizadeh, S., George, J.M., Leisnera, P., and Hultman, L., Electrochemical deposition of Co nanowire arrays; quantitative consideration of concentration profiles, Electrochim. Acta, 2001, vol. 47, no.6, p. 865. https://doi.org/10.1016/S0013-4686(01)00797-6
  13. Ghahremaninezhad, A. and Dolati, A., Diffusion-Controlled Growth Model for Electrodeposited Cobalt Nanowires in Highly Ordered Aluminum Oxide Membrane, ECS Transactions, 2010, vol. 28, no. 17, p. 13. https://doi.org/10.1149/1.3503348
  14. Blanco, S., Vargas, R., Mostany, J., Borrás, C., and Scharifker, B.R., Modeling the Growth of Nanowire Arrays in Porous Membrane Templates, J. Electrochem. Soc., 2014, vol. 161, no. 8, E3341. https://doi.org/10.1149/2.039408jes
  15. Fang, A. and Haataja, M., Modeling and Analysis of Electrodeposition in Porous Templates, J. Electrochem. Soc., 2017, vol. 164, no. 13, D875. https://doi.org/10.1149/2.1331713jes
  16. Chen, L., Zhang, H.W., Liang, L.Y., Liu, Z., Qi, Y., Lu, P., Chen, J., and Chen, L.Q., Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model, J. Power Sources, 2015, vol. 300, p. 376. https://doi.org/10.1016/j.jpowsour.2015.09.055
  17. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Simple model of mass transfer in template synthesis of metal ordered nanowire arrays, Electrochim. Acta, 2013, vol. 96, p. 1. https://doi.org/10.1016/j.electacta.2013.02.079
  18. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Simulation of inhomogeneous pores filling in template electrodeposition of ordered metal nanowire arrays, Electrochim. Acta, 2013, vol. 112, p. 279. https://doi.org/10.1016/j.electacta.2013.08.171
  19. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Modeling of metal electrodeposition in the pores of anodic aluminum oxide, Russ. J. Electrochem., 2015, vol. 51, p. 799. https://doi.org/10.1134/S1023193515090049
  20. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Mass transfer during metal electrodeposition into the pores of anodic aluminum oxide from a binary electrolyte under the potentiostatic and galvanostatic conditions, Electrochim. Acta, 2016, vol. 207, p. 247. https://doi.org/10.1016/j.electacta.2016.04.119
  21. Левич, В.Г. Физико-химическая гидродинамика. М.: Физматгиз, 1959.
  22. Shin, S., Al-Housseiny, T.T., Kim, B.S., Cho, H.H., and Stone, H.A., The Race of Nanowires: Morphological Instabilities and a Control Strategy, Nano Lett., 2014, vol. 14, no. 8, p. 4395. https://doi.org/10.1021/nl501324t
  23. Li, F., Zhang, L., and Metzger, R.M., On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, Chem. Mater., 1998, vol. 10, no. 9, p. 2470. https://doi.org/10.1021/cm980163a
  24. Lee, W., Ji, R., Gösele, U., and Nielsch, K., Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature Mater., 2006, vol. 5, p. 741. https://doi.org/10.1038/nmat1717
  25. Napolskii, K.S., Roslyakov, I.V., Eliseev, A.A., Byelov, D.V., Petukhov, A.V., Grigoryeva, N.A., Bouwman, W.G., Lukashin, A.V., Chumakov, A.P., and Grigoriev, S.V., The Kinetics and Mechanism of Long-Range Pore Ordering in Anodic Films on Aluminum, J. Phys. Chem. C, 2011, vol. 115, no. 48, p. 23726. https://doi.org/10.1021/jp207753v
  26. Napolskii, K.S., Roslyakov, I.V., Romanchuk, A.Y., Kapitanova, O.O., Mankevich, A.S., Lebedev, V.A., and Eliseev, A.A., Origin of long-range orientational pore ordering in anodic films on aluminium, J. Mater. Chem., 2012, vol. 22, no. 24, p. 11922. https://doi.org/10.1039/C2JM31710A
  27. Roslyakov, I.V., Eliseev, A.A., Yakovenko, E.V., Zabelin, A.V., and Napolskii, K.S., Longitudinal pore alignment in anodic alumina films grown on polycrystalline metal substrates, J. Appl. Cryst., 2013, vol. 46, p. 1705. https://doi.org/10.1107/S002188981302579X
  28. Petukhov, D.I., Napolskii, K.S., and Eliseev, A.A., Permeability of anodic alumina membranes with branched channels, Nanotechnology, 2012, vol. 23, p. 335601. https://doi.org/10.1088/0957-4484/23/33/335601
  29. Lim, J.H. and Wiley, J.B., Controlling Pore Geometries and Interpore Distances of Anodic Aluminum Oxide Templates via Three-Step Anodization, J. Nanosci. Nanotechnol., 2015, vol. 15, no. 1, p. 633. https://doi.org/10.1166/jnn.2015.9245
  30. Kasi, A.K. and Kasi, J.K., Bending and branching of anodic aluminum oxide nanochannels and their applications, J. Vac. Sci. Technol. B, 2012, vol. 30, no. 3, p. 2166. https://doi.org/10.1116/1.4711246
  31. Petukhov, D.I., Napolskii, K.S., Berekchiyan, M.V., Lebedev, A.G., and Eliseev, A.A., Comparative Study of Structure and Permeability of Porous Oxide Films on Aluminum Obtained by Single- and Two-Step Anodization, Appl. Mater. Interfaces, 2013, vol. 5, no. 16, p. 7819. https://doi.org/10.1021/am401585q
  32. Choi, Y.C. and Bu, S.D., Nanopore Domain Growth Behavior by Nanopore Changes Near Domain Boundaries in Porous Anodic Alumina, J. Nanosci. Nanotechnol., 2011, vol. 11, no. 2, p. 1346. https://doi.org/10.1166/jnn.2011.3393
  33. Shim, S.J., Jo, K.G., and Kim, Y.Y., Fabrication and Growth of Ni Nanowires by using Anodic Aluminum Oxide (AAO) Template via Electrochemical Deposition, J. Korean Powder Metallurgy Institute, 2011, vol. 18, no. 1, p. 49. https://doi.org/10.4150/KPMI.2011.18.1.049
  34. Liu, Y., Chang, Y., Ling, Z., Hu, X., and Li, Y., Structural coloring of aluminum, Electrochem. Comm., 2011, vol. 13, no. 12, p. 1336. https://doi.org/10.1016/j.elecom.2011.08.008
  35. Kushnir, S.E. and Napolskii, K.S., Thickness-dependent iridescence of one-dimensional photonic crystals based on anodic alumina, Materials & Design, 2018, vol. 144, p. 140. https://doi.org/10.1016/j.matdes.2018.02.012
  36. Noyan, A.A., Leontiev, A.P., Yakovlev, M.V., Roslyakov, I.V., Tsirlina, G.A., and Napolskii, K.S., Electrochemical growth of nanowires in anodic alumina templates: the role of pore branching, Electrochim. Acta, 2017, vol. 226, p. 60. https://doi.org/10.1016/j.electacta.2016.12.142
  37. Liu, P., Singh, V.P., and Rajaputra, S., Barrier layer non-uniformity effects in anodized aluminum oxide nanopores on ITO substrates, J. Membrane Sci., 2009, vol. 21, no. 11, p. 115303. https://doi.org/10.1088/0957-4484/21/11/115303
  38. Noyan, A.A. and Napolskii, K.S., Birefringence in anodic aluminum oxide: an optical method for measuring porosity, Materials Advances, 2022, vol. 3, p. 3642. https://doi.org/10.1039/D2MA00111J
  39. Lide, R.L., CRC Handbook of Chemistry and Physics, CRC Press, 2004.

Дополнительные файлы


© А.А. Ноян, И.В. Колесник, А.П. Леонтьев, К.С. Напольский, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».