EFFECT OF ACETIC ACID ON THE RESISTANCE TO LOCAL CORROSION OF 13% CHROMIUM STEEL IN CO2-CONTAINING ENVIRONMENTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of concentration of acetic acid ranged from 0 to 5000 ppm on the processes of initiation and propagation of pitting corrosion in martensitic class stainless steel containing 13% chromium was studied. The research was conducted in CO2-saturated 5 wt. % sodium chloride solutions at various temperatures using electrochemical methods, including cyclic potentiodynamic polarization and pulse potentiostatic technique. The results show that the presence of acetic acid stimulates the formation and development of localized corrosion, increases the metal dissolution rate within the pits, promotes the initiation of a greater number of pits, and facilitates their spread on surface, leading to the expansion due to smaller pits adjacent to the main ones.

About the authors

I. Yu. Pyshmintsev

TMK Research LLC

Moscow, Russia

E. R. Mansurova

TMK Research LLC

Email: e.mansurova@tmk-group.com
Moscow, Russia

A. N. Maltseva

TMK Research LLC

Moscow, Russia

O. V. Vavilova

TMK Research LLC

Email: o.vavilova@tmk-group.com
Moscow, Russia

S. A. Kosteva

TMK Research LLC

Moscow, Russia

S. I. Kotov

TMK Research LLC

Moscow, Russia

References

  1. Zhang, H., Zhao, Y.L., and Jiang, Z.D., Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl– environment, Mater. Lett., 2005, vol. 59, p. 3370.
  2. Dalmau, A. and Richard, C., Degradation mechanisms in martensitic stainless steels: Wear, corrosion and tribocorrosion appraisal, Tribol. Int. J., 2018, vol. 121, p. 167.
  3. Du, J., Xiang, K., Zhao, L., Lan, X., Liu, P., and Liu, Y., Corrosion inhibition of 13Cr stainless steel in HCl/HAc/HF acid solution, Int. J. Electrochem. Sci., 2019, vol. 14, no. 9, p. 8919.
  4. Пумпянский, Д.А., Пышминцев, И.Ю., Выдрин, А.В., Кузнецов, В.И., Красиков, А.В. Основы металловедения и технологии производства труб из коррозионно-стойких сталей. М.: Металлургиздат, 2023. 682 с. [Pumpyanskii, D.A., Pyshmintsev, I.Yu., Vydrin, A.V., Kuznetsov, V.I., and Krasikov, A.V., Fundamentals of Materials Science and Production Technology of Corrosion-Resistant Steel Pipes (in Russian). Moscow: Metallurgizdat, 2023. 682 p.]
  5. Мач, С., Бени, Х. Влияние температуры на локальную коррозию нержавеющей стали. Электрохимия. 2000. Т. 36. С. 1268. [Matsch, St. and Bohni, H., Influens of temperature in the localized corrosion of stainless steels, Russ. J. Eleсtrochem., 2000, vol. 36, p. 1122.]
  6. Yin, Z.F., Feng, Y.R., Zhao, W.Z., Yin, C.X., and Tian, W., Pitting corrosion behaviour of 316L stainless steel in chloride solution with acetic acid and CO2, Corros. Eng. Sci. Technol., 2011, vol. 46, no. 1, p. 56.
  7. Al-Moubaraki, A.H. and Obot, I.B., Top of the line corrosion: causes, mechanisms, and mitigation using corrosion inhibitors, Arab. J. Chem., 2021, vol. 14, no. 5, p. 103116.
  8. Larrey, D. and Gunaltun, Y., Correlation of cases of top of line corrosion with calculated water condensation rates, NACE Corros., 2000, no. 71.
  9. ISO 21457:2010. Petroleum, petrochemical and natural gas industries – Materials selection and corrosion control for oil and gas production systems. 2010.
  10. NORSOK M-001. Material selection. 2014.
  11. Plennevaux, C., Cassagne, Th., Bonis, M., Ferrando, N., and Kittel, J., Improving pH prediction for high pressure and high temperature applications in oil and gas production, Corrosion, 2013.
  12. Sun, Y., George, K., and Nesic, S., The effect of Cl– and acetic acid on localized CO2 corrosion in wet gas flow, NACE – Int. Corros. Conf. Ser., 2003, no. 03327.
  13. George, K., Nesic, S., and de Waard, C., Electrochemical investigation and modeling of carbon dioxide corrosion of carbon steel in the presence of acetic acid, Corrosion, 2004, no. 04059.
  14. Guo, X., Chen, Z., Liu, D., Bando, K., and Tomoe, Y., The effect of acetic acid and acetate on CO2 corrosion of carbon steel, NACE – Int. Corros. Conf. Ser., 2005, no. 05306.
  15. Li, P., Du, M., Hou, J., Zhang, Y., Fan, L., and Lin, C., Corrosion behavior of 316l stainless steel in oilfield produced water in presence of CO2 and acetic acid, Int. J. Electrochem. Sci., 2020, vol. 15, p. 4287.
  16. Hedges, B. and McVeigh, L., The role of acetate in CO2 corrosion: The double whammy, NACE – Int. Corros. Conf. Ser., 1999, no. 21.
  17. Zhang, H., Huang, W., Wei, H., Chen, Z., Cao, J., Tang, Y., Zhao, X., and Zuo, Y., Effect of HAc on the metastable pitting corrosion of 304 SS in NaCl solution, Materials, 2022, no. 15(10):3618.
  18. Rao, V.S. and Singhal, L.K., Corrosion behavior of Cr–Mn–Ni stainless steel in acetic acid solution, Corrosion, 2010, vol. 66, no. 8, p. 085004.
  19. Tran P., Brown B., Nesic S. Investigation of the electrochemical mechanisms for acetic acid corrosion of mild steel, Corrosion, 2014, vol. 70, no. 3, p. 223.
  20. Пумпянский, Д.А., Пышминцев, И.Ю., Битюков, С.М., Гервасьев, М.А., Гусев, А.А. Особенности микроструктуры, фазового состава и возможности упрочнения нержавеющих сталей с 13–17% Cr. Известия вузов. Черная металлургия. 2022. Т. 65. № . 9. С. 644. [Pumpyanskii, D.A., Pyshmintsev, I.Yu., Bityukov, S.M., Gervas’ev, M.A., and Gusev, A.A., Features of microstructure, phase composition and strengthening capability of stainless steels with 13–17% Cr, Izvestiya. Ferrous Metallurgy, 2022, vol. 65, no. 9, p. 644.]
  21. ASTM G61–1986 (R2018). Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron-, nickel-, or cobalt-based alloys.
  22. Esmailzadeh, S., Aliofkhazraei, M., and Sarlak, H., Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A review, Prot. Met. Phys. Chem. Surfaces, 2018, vol. 54, no. 5, p. 976.
  23. Davydov, A.D., Shaldaev, V.S., and Engel, G.R., Pitting on the 20Kh13 steel in chloride solutions, Russ. J. Eleсtrochem., 2006, vol. 42, p. 121.
  24. Lei, X., Feng, Y., Zhang, J., Fu, A., Yin, C., and Macdonald, D.D., Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel, Electrochim. Acta, 2016, vol. 191, p. 640.
  25. Gao, J., Jiang, Y., Deng, B., Ge, Z., and Li, J., Determination of pitting initiation of duplex stainless steel using potentiostatic pulse technique, Electrochim. Acta, 2010, vol. 55, no. 17, p. 4837.
  26. Chen, B., Sun, Y., Cai, D., Yao, Q., Yin, L., Wan, Y., Jiang, Y., and Li, J., Use of the potentiostatic pulse technique to study and influence pitting behavior of 317L stainless steel, J. Electrochem. Soc., 2020, vol. 167, no. 4, p. 041509.
  27. Sun, Y., Sun, L., Dai, N., Liu, Y., Wu, J., Li, J., and Jiang, Y., Application of potentiostatic pulse technique and statistical analysis in evaluating pitting resistance of aged 317L stainless steel, Mater. Corros., 2020, vol. 71, no. 6, p. 900.
  28. Chen, S., Sun, L., Cao, W., Zhao, T., Qiu, J., and Li, W., Research on the pitting behavior of high nitrogen austenitic stainless steel 316LN in sodium chloride solution by using modified potentiostatic pulse test, J. Electroanal. Chem., 2022, vol. 922.
  29. Racot, A., Aubert, I., Touzet, M., Thiebaut, S., and Demesy, M., Statistical analysis of the pitting corrosion induced by potentiostatic pulse tests of wrought and SLM 316L stainless steels, Corros. Sci., 2020, vol. 197.
  30. Shao, Z., Yu, D., Shao, D., Du, Y., Zheng, D., Qiu, Z., and Wu, B., A protective role of Cl– ion in corrosion of stainless steel, Corros. Sci., 2024, vol. 226, p. 111631.
  31. Yin, Z.F., Zhao, W.Z., Lai, W.Y., and Zhao, X.H., Electrochemical behaviour of Ni-base alloys exposed under oil/gas field environments, Corros. Sci., 2009, vol. 51, no. 8, p. 1702.
  32. Tang, Y., Zuo, Y., Wang, J., Zhao, X., Niu, B., and Lin, B., The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions, Corros. Sci., 2013, vol. 80, p. 111.
  33. Lu, P., Zhang, P., Feng, H., Li, H., and Zhang, S., Revealing the impact of inclusion types on pitting corrosion behavior of high-nitrogen stainless bearing steels with different Ce contents: Induction effect of oxides/sulfides and inhibition effect of nitrides, Corros. Sci., 2024, vol. 236, p. 112247.
  34. Wang, X., Luo, H., Zhao, Q., Cheng, H.H., Li, Q., Pan, Z., Wei, Y., Ma, Y., and Li, X., Investigations on the passive and pitting behaviors of 17–4 PH martensitic stainless steel containing Al2O3 inclusions in chlorine environment, Colloids Surfaces A Physicochem. Eng. Asp., 2022, vol. 660.
  35. Li, T., Wu, J., and Frankel, G.S., Localized corrosion: Passive film breakdown vs. Pit growth stability, Part VI: Pit dissolution kinetics of different alloys and a model for pitting and repassivation potentials, Corros. Sci., 2021, vol. 182, p. 109277.
  36. Crolet, J.-L., Thevenot, N., and Dugstad, A., Role of free acetic acid on the CO2 corrosion of steels, NACE Corosion, 1999, no. 24.
  37. Kahyarian, A., Schumaker, A., Brown, B., and Nesic, S., Acidic corrosion of mild steel in the presence of acetic acid: Mechanism and prediction, Electrochim. Acta, 2017, vol. 258, p. 639.
  38. Nesic, S., Kahyarian, A., and Choi, Y.S., Implementation of a comprehensive mechanistic prediction model of mild steel corrosion in multiphase oil and gas pipelines, Corrosion, 2019, vol. 75, no. 3, p. 274.
  39. Amri, J., Gulbrandsen, E., and Nogueira, R.P., Propagation and arrest of localized attacks in carbon dioxide corrosion of carbon steel in the presence of acetic acid, Corrosion, 2018, vol. 66, no. 3, p. 035001.
  40. Wei, J. and Zhou, B., Effect of acetic acid on the pitting corrosion of 2Cr12MoV turbine steel in early condensates containing chloride ions, Int. J. Electrochem. Sci., 2017, vol. 12, no. 4, p. 3166.
  41. Amri, J., Gulbrandsen, E., and Nogueira, R.P., Pit growth and stifling on carbon steel in CO2-containing media in the presence of HAc, Electrochim. Acta, 2009, vol. 54, no. 28, p. 7338.
  42. Amri, J., On growth and stifling of localized corrosion attacks in CO2 and acetic acid environments: Application to the top-of-line corrosion of wet gas pipelines operated in stratified flow regime, HAL, 2009.
  43. Amri, J., Gulbrandsen, E., and Nogueira, R.P., The effect of acetic acid on the pit propagation in CO2 corrosion of carbon steel, Electrochem. commun., 2008, vol. 10, no. 2, p. 200.
  44. Wang, Y., Cheng, G., Wu, W., Qiao, Q., Li, Y., and Li, X., Applied surface science effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions, Appl. Surf. Sci., 2015, vol. 349, p. 746.
  45. Tsutsumi, Y., Nishikata, A., and Tsuru, T., Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions, Corros. Sci., 2007, vol. 49, p. 1394.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».