The effect of decalin and perfluorodecalin on Dendrite formation at metal lithium anodes During their operation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this work, we studied the effect of additions of decahydronaphthalene (decalin) and its derivative, perfluorodecalin (octadecafluorodecalin), on the deposition and dissolution of lithium metal, including dendrite formation, at the anodes of secondary lithium power sources in an electrolyte based on lithium hexafluorophosphate and a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). The study was carried out using the methods of current transients and electrochemical impedance. The results showed that, in contrast to traditional cationic surfactants cetyltrimethylammonium bromide and hexadecylpyridinium bromide, which we studied earlier, decalin and perfluorodecalin demonstrate specific interaction with the surface of the lithium electrode. Moreover, the interaction with decalin is so strong that it actually blocks the processes of both deposition and anodic dissolution of lithium at the surface of the lithium electrode. The interaction of perfluorodecalin with the lithium surface turned out to be weaker. As a result, perfluorodecalin does not interfere with the cycling of the metal lithium anode, but at the same time shows an inhibitory effect on the dendrite formation. In the electrolyte with the addition of perfluorodecalin, lithium anode was able to undergo more than 80 charge-discharge cycles with a Coulomb efficiency of 70–80%, while without the additive, the number of cycles was less than 40, and the Coulomb efficiency was 60% or lower.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Alpatov

M.V. Lomonosov Moscow State University

Email: osemenik@elch.chem.msu.ru

Department of Chemistry

Ресей, Moscow

F. Vasiliev

M.V. Lomonosov Moscow State University

Email: osemenik@elch.chem.msu.ru

Department of Chemistry

Ресей, Moscow

O. Semenikhin

M.V. Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: osemenik@elch.chem.msu.ru

Department of Chemistry

Ресей, Moscow

Әдебиет тізімі

  1. Алпатов, С. С., Васильев, Ф. А., Алешина, В. Х., Ваграмян, Т. А., Семенихин, О. А. Электроосаждение лития в присутствии поверхностно-активных веществ. Электрохимия. 2024. Т. 60. № 5. С. 349.
  2. Алпатов, С. С., Васильев, Ф. А., Алешина, В. Х., Ваграмян, Т. А., Семенихин, О. А. Анализ спектров электрохимического импеданса и строения твердоэлектролитной интерфазы на электроосажденном металлическом литии с использованием метода распределения времен релаксации. Электрохимия. 2024. Т. 60. № 5. С. 361.
  3. Chen, S.R., Dai, F., and Cai, M., Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications, ACS Energy Lett., 2020, vol. 5, p. 3140.
  4. Liu, D.H., Bai, Z.Y., Li, M., Yu, A.P., Luo, D., Liu, W.W., Yang, L., Lu, J., Amine, K., and Chen, Z.W., Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives, Chem. Soc. Rev., 2020, vol. 49, p. 5407.
  5. Qin, K., Holguin, K., Mohammadiroudbari, M., Huang, J., Kim, E. Y. S., Hall, R., and Luo, C., Strategies in structure and electrolyte design for high-performance lithium metal batteries, Adv. Funct. Mater., 2021, vol. 31, p. 2009694.
  6. Besenhard, J.O., Gürtler, J., Komenda, P., and Paxinos, A., Corrosion protection of secondary lithium electrodes in organic electrolytes, J. Power Sources, 1987, vol. 20, p. 253.
  7. von Aspern, N., Roeschenthaler, G.-V., Winter, M., and Cekic-Laskovic, I., Fluorine and Lithium: Ideal Partners for High-Performance Rechargeable Battery Electrolytes, Angew. Chem. Int. Ed., 2019, vol. 58, p. 16124.
  8. Xu, N., Shi, J., Liu, G., Yang, X., Zheng, J., Zhang, Z., and Yang, Y., Research progress of fluorine-containing electrolyte additives for lithium ion batteries, J. Power Sources Adv., 2021, vol. 7, p. 100043.
  9. Scharifker, B. and Hills, G., Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 1983, vol. 28, p. 879.
  10. Scharifker, B.R., Mostany, J., Palomar‐Pardavé, M., and González, I., On the theory of the potentiostatic current transient for diffusion‐controlled three‐dimensional electrocrystallization processes, J. Electrochem. Soc., 1999, vol. 146, p. 1005.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Impedance hodographs measured on electrodes made of (a) lithium and (b) copper before deposition of metallic lithium at a potential of –0.03 V in the presence of additives of (1) perfluorinated and (2) non-fluorinated decalin.

Жүктеу (140KB)
3. Fig. 2. Impedance hodographs measured on electrodes made of (a) lithium and (b) copper after deposition of metallic lithium at a potential of –0.03 V in the presence of additives of (1) perfluorinated and (2) non-fluorinated decalin.

Жүктеу (122KB)
4. Fig. 3. Current density transients measured during the deposition of metallic lithium on (a) copper and (b) lithium electrodes at a potential of –0.03 V in the following electrolytes: (1) with the addition of decalin, (2) with the addition of perfluorodecalin, (3) without additives.

Жүктеу (137KB)
5. Fig. 4. Current density transients measured during lithium metal deposition: (a, b) on the copper electrode in the electrolyte with the addition of decalin, (c) on the copper electrode in the electrolyte with the addition of perfluorodecalin, (d) on the lithium electrode in the electrolyte with the addition of decalin (curves 1, 2) and with the addition of perfluorodecalin (curves 3, 4, 5). Potentials: (a, b) 1 – –0.03 V, 2 – –0.025 V, 3 – –0.04 V, 4 – –0.6 V, 5 – –0.1 V; (c) 1 – –0.03 V, 2 – –0.06 V, 3 – –0.095 V; (d) 1 – –0.085 V, 2 – –0.06 V, 3 – –0.03 V, 4 – –0.06 V, 5 – –0.1 V.

Жүктеу (272KB)
6. Fig. 5. Galvanostatic charge-discharge curves obtained for galvanostatic deposition-dissolution of lithium on a copper electrode at a current density of 0.1 mA/cm² (1) in a standard electrolyte without additives and (2) in an electrolyte with the addition of perfluorinated decalin. Cycle No. 7.

Жүктеу (81KB)

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».