The solution of the task of dynamic interpretation of seismic data using machine learning methods
- Authors: Vokina V.R.1, Avdyukov A.S.1, Lesiv A.A.1, Krupkin I.A.1, Emelyanov A.N.2
-
Affiliations:
- Tyumen Petroleum Research Center LLC
- Industrial University of Tyumen
- Issue: No 5 (2024)
- Pages: 117-131
- Section: INFORMATION TECHNOLOGIES, AUTOMATION AND MANAGEMENT IN THE OIL AND GAS INDUSTRY
- URL: https://journal-vniispk.ru/0445-0108/article/view/357250
- DOI: https://doi.org/10.31660/0445-0108-2024-5-117-131
- ID: 357250
Cite item
Full Text
Abstract
About the authors
V. R. Vokina
Tyumen Petroleum Research Center LLC
Email: vrvokina@tnnc.rosneft.ru
ORCID iD: 0000-0002-9651-1758
A. S. Avdyukov
Tyumen Petroleum Research Center LLC
ORCID iD: 0009-0009-5125-7379
A. A. Lesiv
Tyumen Petroleum Research Center LLC
ORCID iD: 0009-0007-6897-488X
I. A. Krupkin
Tyumen Petroleum Research Center LLC
ORCID iD: 0009-0003-9482-929X
A. N. Emelyanov
Industrial University of Tyumen
ORCID iD: 0009-0008-4153-6174
References
Амани, М. М. М. Применение методов геостатистики в факторно-регрессионном прогнозировании пористости коллекторов по сейсмическим атрибутам / М. М. М. Атамани. – Текст : непосредственный // Молодежь и современные информационные технологии : сборник трудов XVI Международной научно-практической конференции студентов, аспирантов и молодых ученых, 3–7 декабря 2018 года, Томск. – Томск: Томский политехнический университет, 2019. – С. 156–157. Tarantola, A. Inverse problem theory and methods for model parameter estimation / A. Tarantola. – doi: 10.1137/1.9780898717921. – Direct text. – Philadelphia: Society for industrial and applied mathematics, 2005. – 342 p. Successful leveraging of image processing and machine learning in seismic structural interpretation : A review / Z. Wang, H. Di, M. A. Shafiq. – doi: 10.1190/tle37060451.1. – Direct text // The Leading Edge. – 2018. – Vol. 37, Issue 6. – P. 451–461. Obinnaya Chikezie Victor, N. Automated Seismic Interpretation : Machine Learning Technologies are Being used to Develop Automated Seismic Interpretation to Identify Geological Features, Such as Faults and Stratigraphic Horizons / N. Obinnaya Chikezie Victor, L. Oghenechodja Daniel. – doi: 10.51483/IJAIML.3.2.2023.74-98. – Direct text // International Journal of Artificial Intelligence and Machine Learning. – 2023. – Vol. 3, Issue 2. – P. 74–98. Integration of Multiple Bayesian Optimized Machine Learning Techniques and Conventional Well Logs for Accurate Prediction of Porosity in Carbonate Reservoirs / S. Alatefi, R. Abdel Azim, A. Alkouh, G. Hamada. – doi: 10.3390/pr11051339. – Direct text // Processes. – 2023. – Vol. 11, Issue 5. – P. 1339–1361. Dietterich, T. G. Ensemble Methods in Machine Learning / T. G. Dietterich. – doi: 10.1007/3-540-45014-9_1. – Direct text // International Workshop on Multiple Classifier Systems. – Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. – P. 1–15. Polikar, R. Ensemble based systems in decision making / R. Polikar. – doi: 10.1109/MCAS.2006.1688199. – Direct text // IEEE Circuits and Systems Magazine. – 2006. – Vol. 6, Issue 3. – P. 21–45. Opitz, D. Popular ensemble methods : An empirical study / D. Opitz, R. Maclin. – doi: 10.1613/jair.614. – Direct text // Journal of Artificial Intelligence Research. – 1999. – Vol. 11. – P. 169–198. Bühlmann, P. Boosting with the L2 Loss : regression and classification / P. Bühlmann, B. Yu. – doi: 10.1198/016214503000125. – Direct text // Journal of the American Statistical Association. – 2003. – Vol. 98, Issue 462. – P. 324–339. Freund, Y. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting / Y. Freund, R. E. Schapire. – doi: 10.1006/jcss.1997.1504. – Direct text // Journal of Computer and System Sciences. – 1997. – Vol. 55, Issue 1. – P. 119–139. CatBoost : unbiased boosting with categorical features / L. Prokhorenkova, G. Gusev, A. Vorobev. – doi: 10.48550/arXiv.1706.09516. – Direct text // In Advances in Neural Information Processing Systems. – 2018. – Vol. 31. – P. 6638–6648. Friedman, J. H. Greedy Function Approximation : A Gradient Boosting Machine / J. H. Friedman. – doi: 10.1214/aos/1013203451. – Direct text // The Annals of Statistics. – 2001. – Vol. 1. – P. 1189–1235. Geurts, P. Extremely randomized trees / P. Geurts, D. Ernst, L. Wehenkel. – doi: 10.1007/s10994-006-6226-1. – Direct text // Machine learning. – 2006. – Vol. 63. – P. 3–42. Breiman, L. Random Forests / L. Breiman. – doi: 10.1023/A:1010933404324. – Direct text // Machine Learning. – 2001. – Vol. 45. – P. 5–32. Scikit-learn : Machine learning in Python / F. Pedregosa, G. Varoquaux, A. Gramfort. – doi: 10.5555/1953048.2078195. – Direct text // Journal of Machine Learning research. – 2011. – Vol. 12. – P. 2825–2830. The Elements of Statistical Learning : Data Mining, Inference, and Prediction / T. Hastie, R. Tibshirani, J. H. Friedman, J. H. Friedman. – Direct text // New York: Springer. – 2009. – Vol. 2. – P. 1–758. GridSearchCV. – Text : electronic // Scikit-learn : website. – URL: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html (accessed: 06. 02. 2024). Biau, G. A random forest guided tour / G. Biau, E. Scornet. – doi: 10.1007/s11749-016-0481-7. – Direct text // Test. – 2016. – Vol. 25. – P. 197–227. Long, P. M. Random classification noise defeats all convex potential boosters / P. M. Long, R. A. Servedio. – doi: 10.1007/s10994-009-5165-zs. – Direct text // Mach Learn. – 2010. – Vol. 78. – P. 287–304. Natekin, A. Gradient boosting machines, a tutorial / A. Natekin, A. Knoll. – Text : electronic // Frontiers in Neurorobotics. – 2013. – Vol. 7, Issue 21. – doi: 10.3389/fnbot.2013.00021.
Supplementary files
