Investigation of kinetic mechanisms of photocatalytic hydrogen generation from formic aside using metal-ceramic composites under visible-light irradiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Processes of photocatalytic hydrogen generation from the formic acid water solution under vis-light irradiation with tantalum contained metal-ceramic silicon nitride-based composites were investigated depending on pH of the solution and hydrogen peroxide adding. These compounds were obtained by self-propagated high temperature (SHS) synthesis in the way of the ferrosilicoaluminum (FSA) and silicon-aluminum powders ignition in a nitrogen atmosphere with the tantalum addition. During the investigation it was found out that the reaction rate of the hydrogen production without hydrogen peroxide can be described within the Langmuir–Hinshelwood mechanism. There is the reaction mechanism changing simultaneously with a formic acid concentration increasing in the presence of H2O2. The most significant reaction rate of hydrogen production from HCOOH is observed with the Fe-contained composite synthesized from FSA in the solution system without H2O2 addition, the reaction turns of frequency (TOF) is 4.55 µmol/min.

Full Text

Restricted Access

About the authors

L. N. Skvortsova

National Research Tomsk State University

Author for correspondence.
Email: lnskvorcova@inbox.ru
Russian Federation, Lenin Ave., 36, Tomsk, 634050

I. A. Artyukh

National Research Tomsk State University

Email: lnskvorcova@inbox.ru
Russian Federation, Lenin Ave., 36, Tomsk, 634050

T. V. Tatarinova

National Research Tomsk State University

Email: lnskvorcova@inbox.ru
Russian Federation, Lenin Ave., 36, Tomsk, 634050

K. A. Bolgaru

Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences

Email: lnskvorcova@inbox.ru
Russian Federation, Akademichesky Ave., 10/4, Tomsk, 634055

References

  1. Jamali-Sheini F., Cheraghizade M., Yousefi R. // Solid State Sci. 2018. V. 79. P. 30. https://doi.org/10.1088/1361-6641/ab0723
  2. Acar C., Dincer I., Naterer G.F. // Int. J. Energy Res. 2016. V. 40. № 11. P. 1449. https://doi.org/10.1002/er.3549
  3. Markovskaya D.V., Kozlova E.A., Stonkus O.A., Saraev A.A., Cherepanova S.V., Parmon V.N. // Int. J. Hydrogen Energy. 2017. V. 42. № 51. P. 30067. https://doi.org/10.1016/j.ijhydene.2017.10.104
  4. Pilemalm R., Pourovskii L., Mosyagin I., Simak S., Eklund P. // Condens. Matter. 2019. V. 4. Р. 36. https://doi.org/10.3390/condmat4020036
  5. Журенок А.В., Марковская Д.В., Потапенко К.О., Сидоренко Н.Д., Черепанова С.В., Сараев А.А., Герасимов Е.Ю., Козлова Е.А. // Кинетика и катализ. 2023. Т. 64. № 3. С. 276. https://doi.org/10.31857/S0453881123030139
  6. Kumaravel V., Mathew S., Bartlett J., Pillai S.C. // Appl. Catal. B: Environ. 2019. V. 244. P. 1021. https://doi.org/10.1016/j.apcatb.2018.11.080
  7. Fajrina N., Tahir M. //Int. J. of Hydrogen Energy. 2019. V. 44. N2. P. 540–577.
  8. Huang J., Li R., Li D., Chen P., Zhang Q., Liu H., Lv W., Liu G., Feng Y. // J. Hazard. Mater. 2020. V. 386. P. 121634.
  9. Liang Y., Li W., Wang X., Zhou R., Ding H. // Ceramics Int. 2022. V. 48. № 2. P. 2826. https://doi.org/10.1016/j.ceramint.2021.10.072.
  10. Silva B.A., Silva J.C.G., González S.Y.G., Moreira R.F.P., Peralta R.A., Notza https://www.sciencedirect.com/author/9939927800/dachamir-hotzaD., de Noni A. Junior // Ceramics Int. 2022. V. 48. № 22. P. 32917. https://doi.org/10.1016/j.ceramint.2022.07.221
  11. Ullah H., Tahir A.A., Bibi S., Mallick T.K., Karazhanov S. Zh. // Appl. Catal. B: Environ. 2018. V. 229. P. 24. https://doi.org/10.1016/J.APCATB.2018.02.001
  12. Ma Y., Yumeng F., Wang M., Liang X. // J. Energy Chem. 2021. V. 56. P. 353.
  13. Fang C.M., Orhan E., de Wijs G.A., Hintzen H.T. // J. Mater. Chem. 2001. № 11. P. 1248. https://doi.org/10.1039/В005751G
  14. Орлов В.М., Седнева Т.А. https://elibrary.ru/item.asp?id=28100298 // Перспективные материалы. 2017. № 1. С. 5.
  15. Li D., Zeng L., Li B., Yang X., Yu Q., Wu Z. // Mater. Des. 2020. V. 187. P. 108416. https://doi.org/10.1016/j.matdes.2019.108416
  16. Skvortsova L.N., Chukhlomina L.N., Minakova T.S., Sherstoboeva M.V. // Rus. J. Appl. Chem. 2017. № 90. P. 1246.
  17. Artiukh I.A., Bolgaru K.A., Dychko K.A., Bavykina A.V., Sastre F., Skvortsova L.N. // J. ChemistrySelect. 2021. № 6. P. 10025. https://doi.org/10.1002/slct.202102014
  18. Bacardit J., Stotzner J., Chamarro E. // Ind. Eng. Chem. Res. 2007. V. 46. № 23. P. 7615.
  19. Wadley S., Waite T.D. Fenton Processes-Advanced Oxidation Processes for Water and Wastewater Treatment. London: IWA Publishing, 2004. P. 111–135.
  20. Jin O., Lu B., Tao Y.P.X, Himmelhaver C., ShenY., Gu S., Zeng Y., Li X.Y. // Catal. Today. 2019. № 3. Р. 324. https://doi.org/10.1016/j.cattod.2019.12.006
  21. Junge H., Boddien A., Capitta F., Loges B., Noyes J.R., Gladiali S., Beller M. // Tetrahedron Lett. 2009. V. 50. № 14. Р.1603.
  22. Fellay C., Dyson P.J., Laurenczy G.A. // Angew. Chem. Int. Edit. 2008. V. 47. № 21. P. 3966.
  23. Клопотов А.А., Абзаев Ю.А., Потекаев А.И., Волокитин О.Г. Основы рентгеноструктурного анализа в материаловедении. Томск: Изд-во ТГАСУ, 2012. 276 с.
  24. Скворцова Л.Н., Казанцева К.И., Болгару К.А., Артюх И.А., Регер А.А., Дычко К.А. // Неорганические материалы. 2023. № 3. С. 333. https://doi.org/10.1134/S0020168523030123
  25. Гриценко В.А. // Успехи физических наук. 2012. Т. 182. № 5. С. 531.
  26. Farias J., Albizzatti E.D., Alfano O.M. // Catal. Today. 2009. V. 144. P. 117.
  27. Tian Y.C., Fang W.H. // J. Phys. Chem. A. 2006. V. 110. P. 11704.
  28. Pozdnyakov I.P., Glebov E.M., Plyusnin V.F., Grivin V.P., Ivanov Y.V., Vorobyev D.Y., Bazhin N.M. // Pure Appl. Chem. 2000. V. 72. № 11. P. 2187.
  29. Ohtani B. // Chem. Lett. 2008. V. 37. P. 217.
  30. Ohtani B. // Phys. Chem. 2014. V. 16. № 5. P. 1788.
  31. Kondarides D.I., Daskalaki V.M., Patsoura A., Verykios X.E. // Catal. Lett. 2008. V. 122. P. 26.
  32. Куренкова А.Ю., Козлова Е.А. Каичев В.В. // Кинетика и катализ. 2020. Т. 61. № 6. С. 812. https://doi.org/10.31857/S0453881120060052
  33. Puga A.V. // Coord. Chem. Rev. 2016. V. 315. P. 1. https://doi.org/10.1016/j.ccr.2015.12.009

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Emission spectrum of the DIORA 30 LED lamp.

Download (170KB)
3. Fig. 2. Fragments of diffraction patterns of nitrided samples of a mixture of powders (Si + Al + Ta, 10 wt.%) (Si3N4/Ta) and (FSA + Ta, 10 wt.%) (Si3N4/Ta/Fe): 1 – β-Si3N4, 2 – AlN, 3 – Si, 4 – TaN, 5 – TaON, 6 – TaO, 7 – α-Fe, 8 – FexSiy, 9 – Ta2O5.

Download (172KB)
4. Fig. 3. SEM images of composites (a, b) synthesized from FSA and a mixture of silicon and aluminum powders with the addition of tantalum, and distribution maps (c, d) of Ta over the surface.

Download (989KB)
5. Fig. 4. Dependence of the absorption coefficient on the photon energy for composites Si3N4/Ta/Fe (a), Si3N4/Ta (b).

Download (233KB)
6. Fig. 5. Adsorption isotherms of HCOOH on composites.

Download (142KB)
7. Fig. 6. Dependence of the rate of H2 evolution from HCOOH on the Si3N4/Ta/Fe composite on the pH of the solution.

Download (100KB)
8. Fig. 7. Dependence of the rate of H2 evolution on composites on the initial concentration of HCOOH in the absence and with the addition of H2O2.

Download (179KB)
9. Fig. 8. Approximation in coordinates of the Langmuir–Hinshelwood equation of experimental data under different experimental conditions: a – Si3N4/Ta; b – Si3N4/Ta/Fe; c – Si3N4/Ta/H2O2, d – Si3N4/Ta/Fe/H2O2 (С0 = 0.026–0.26 M); d – Si3N4/Ta/H2O2, e – Si3N4/Ta/Fe/H2O2 (С0 = 0.4–1.0 M).

Download (534KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».