Composite photocatalysts Cd1–xZnxS/TiO2 for hydrogen evolution from aqueous solutions of organic and inorganic sacrificial agents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The photocatalytic activity of Cd1–xZnxS (x = 0–1) and TiO2/Cd1–xZnxS composites in the reaction of hydrogen evolution under visible light irradiation (λ = 410 nm) was studied. In the system with an aqueous solution of C2H5OH used as a sacrificial agent, the maximum activity (1.6 mmol g–1 h–1) was demonstrated by Cd0.1Zn0.9S. When using 0.1 M Na2S/0.1 M Na2SO3 as a sacrificial additive, the activity of all Cd1–xZnxS photocatalysts significantly increased, reaching a maximum of 7.0 mmol g–1 h–1 in the presence of Cd0.3Zn0.7S. The deposition of 1% TiO2 on Cd0.3Zn0.7S by mixing in acetone made it possible to synthesize a highly effective composite with an activity of 8.3 mmol g–1 h–1, which corresponds to the world level. A key result is confirmation of the high stability of this composite in both organic and inorganic environments, opening up prospects for its practical application in photocatalytic hydrogen evolution.

About the authors

A. V Zhurenok

Federal Research Center Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

N. Bu

Novosibirsk National Research State University; Heilongjiang University

Novosibirsk, Russia; Harbin China

D. D Mishchenko

Federal Research Center Boreskov Institute of Catalysis SB RAS; Multiaccess Center "SKIF" Boreskov Institute of Catalysis

Koltsovo, Russia

E. Yu Gerasimov

Federal Research Center Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

E. A Kozlova

Federal Research Center Boreskov Institute of Catalysis SB RAS

Email: kozlova@catalysis.ru
Novosibirsk, Russia

References

  1. Tsvetkov P., Samuseva P., Nikolaychuk L. // Energy Convers. Manag. 2024. V. 314. Art. 118671. https://doi.org/10.1016/j.enconman.2024.118671
  2. Şen Z. // Prog. Energy Combust. Sci. 2004. V. 30. № 4. P. 367. https://doi.org/10.1016/j.pecs.2004.02.004
  3. Козлова Е.А., Пармон В.Н. // Успехи химии. 2017. Т. 86. № 9. С. 870. https://doi.org/10.1070/RCR4739
  4. Злотин С.Г., Егорова К.С., Анаников В.П., Акулов А.А., Вараксин М.В., Чупахин О.Н., Чарушин В.Н., Брыляков К.П., Аверин А.Д., Белецкая И.П., Доленговский Е.Л. // Успехи химии. 2023. Т. 92. № 12. RCR5104:1–187. https://doi.org/10.59761/rcr5104
  5. Yusuf M., Rosha P., Qureshi F., Ali F.M., Ibrahim H. // Sustain. Mater. Technol. 2025. V. 43. Art. e01332. https://doi.org/10.1016/j.susmat.2025.e01332
  6. Zou C., Li J., Zhang X., Jin X., Xiong B., Yu H., Liu X., Wang S., Li Y., Zhang L., Miao S. // Nat. Gas Ind. B. 2022. V. 9. № 5. P. 427. https://doi.org/10.1016/j.ngib.2022.04.006
  7. Журенок А.В., Марковская Д.В., Потапенко К.О., Черепанова С.В., Сараев А.А., Герасимов Е.Ю., Козлова Е.А. // Кинетика и катализ. 2022. Т. 63. № 3. С. 248. https://doi.org/10.1134/S0023158422030107
  8. Isa A.T., Hafeez H.Y., Mohammed J., Kafadi A.D.G., Ndikilar C.E., Suleiman A.B. // J. Alloy. Compd. Commun. 2024. V. 4. P. 100043. https://doi.org/10.1016/j.jacom.2024.10005
  9. An S., Zhang L., Ding X., Xue Y., Tian J., Qin Y., You J., Wang X., Zhang H. // J. Colloid Interface Sci. 2024. V. 664. P. 848. https://doi.org/10.1016/j.jcis.2024.03.087
  10. Zakariyya Y., Hafeez H.Y., Mohammed J., Ndikilar C.E., Suleiman A.B., Umaru D. // Int. J. Hydrogen Energy. 2024. V. 95. P. 185. https://doi.org/10.1016/j.ijhydene.2024.11.031
  11. Borrell L., Cervera-March S., Giménez J., Simarro R., Andújar J.M. // Sol. Energy Mater. Sol. Cells. 1992. V. 25. № 1. P. 25. https://doi.org/10.1016/0927-0248(92)90014-G
  12. Moloto N., Moloto M.J., Kalenga M., Govindraju S., Airo M. // Opt. Mater. (Amst). 2013. V. 36. № 1. P. 31. https://doi.org/10.1016/j.optmat.2013.06.023
  13. Zhong W., Huang X., Xu Y., Yu H. // Nanoscale. 2018. V. 10. № 41. P. 19418. https://doi.org/10.1039/c8nr06883f
  14. Sun B., Wu J., Wang W., Wang H., Li Y., Guo Z., Geng Y., Lin H., Wang L. // Appl. Surf. Sci. 2021. V. 542. Art. 148542. https://doi.org/10.1016/j.apsusc.2020.148542
  15. Hamdan S., Al-Ali K., Vega L.F., Muscetta M., Yusuf A.O., Palmisano G. // J. Environ. Chem. Eng. 2024. V. 12. № 5. Art. 113937. https://doi.org/10.1016/j.jece.2024.113937
  16. Hu L., Liu X., Dai R., Lai H., Li J. // Fuel. 2025. V. 382. Art. 133737. https://doi.org/10.1016/j.fuel.2024.133737
  17. Sushnikova A.A., Valeeva A.A., Zhurenok A.V., Sipatov I.S., Rempel A.A. // Kinet. Catal. 2024. V. 65. № 6. P. 710. https://doi.org/10.1134/S0023158424620389
  18. Polevoi L.A., Kozlova E.A., Zhurenok A.V., Gerasimov E.Y., Saraev A.A., Golikova M.V., Baranchikov A.E. // Kinet. Catal. 2024. V. 65. № 5. P. 565. https://doi.org/10.1134/S0023158424601980
  19. Алексеев Р.Ф., Сараев А.А., Куренкова А.Ю., Козлова Е.А. // Успехи химии. 2024. Т. 93. № 5. RCR5124: 1–23. https://doi.org/10.59761/RCR5124
  20. Zhurenok A.V., Markovskaya D.V., Gerasimov E.Y., Cherepanova S.V., Bukhtiyarov A.V., Kozlova E.A. // RSC Adv. 2021. V. 11. № 60. P. 37966. https://doi.org/10.1039/d1ra06845h
  21. Wang L., Geng X., Zhang L., Liu Z., Wang H., Bian Z. // Chemosphere. 2022. V. 286. Art. 131558. https://doi.org/10.1016/j.chemosphere.2021.131558
  22. Pellegrin Y., Odobel F. // Comptes Rendus Chim. 2017. V. 20. № 3. P. 283. https://doi.org/10.1016/j.crci.2015.11.026
  23. Potapenko K.O., Gerasimov E.Y., Cherepanova S.V., Saraev A.A., Kozlova E.A. // Materials (Basel). 2022. V. 15. № 22. P. 8026. https://doi.org/10.3390/ma15228026
  24. Журенок А.В., Марковская Д.В., Потапенко К.О., Сидоренко Н.Д., Черепанова С.В., Сараев А.А., Герасимов Е.Ю., Козлова Е.А. // Кинетика и катализ. 2023. Т. 64. № 3. С. 250. https://doi.org/10.1134/S002315842030114
  25. Tkachenko P., Volchek V., Kurenkova A., Gerasimov E., Popovetskiy P., Asanov I., Yushina I., Kozlova E., Vasilchenko D. // Int. J. Hydrogen Energy. 2022. V. 48. P. 1705. https://doi.org/10.1016/j.ijhydene.2022.11.265
  26. Kurenkova A.Y., Medvedeva T.B., Gromov N.V., Bukhtiyarov A.V., Gerasimov E.Y., Cherepanova S.V., Kozlova E.A. // Catalysts. 2021. V. 11. № 7. P. 870. https://doi.org/10.3390/catal11070870
  27. Potapenko K.O., Kurenkova A.Y., Bukhtiyarov A.V., Gerasimov E.Y., Cherepanova S.V., Kozlova E.A. // Nanomaterials. 2021. V. 11. № 2. P. 355. https://doi.org/10.3390/nano11020355
  28. Любина Т.П., Козлова Е.А. // Кинетика и катализ. 2012. Т. 53. № 2. С. 188. https://doi.org/10.1134/S0023158412020061
  29. Li C., Hu P., Meng H., Jiang Z. // J. Solution Chem. 2016. V. 45. P. 1. https://doi.org/10.1007/s10953-015-0422-1
  30. Kurenkova A.Yu., Radina A.D., Baidyshev V.S., Povalyaev P.V., Aidakov E.E., Gerasimov E.Y., Mishchenko D.D., Zhurenok A.V., Pak A.Y., Kozlova E.A., Kvashnin A.G. // Appl. Surf. Sci. 2024. V. 661. Art. 160095. https://doi.org/10.1016/j.apsusc.2024.160095
  31. Марковская Д.В., Люлюкин М.Н., Журенок А.В., Козлова Е.А. // Кинетика и катализ. 2021. Т. 62. № 4. С. 437.
  32. Kovačič Ž., Likozar B., Huš M. // Fuel. 2022. V. 328. Art. 125322. https://doi.org/10.1016/j.fuel.2022.125322
  33. Nagakawa H., Nagata M. // ACS Omega. 2021. V. 6. № 6. P. 4395. https://doi.org/10.1021/acsomega.0c05749
  34. Li Q., Meng H., Zhou P., Zheng Y., Wang J., Yu J., Gong, J. // ACS Catal. 2013. V. 3. P. 882. https://doi.org/10.1021/cs4000975
  35. Liu Y., Wang G., Li Y., Jin Z. // J. Colloid Interface Sci. 2019. V. 554. P. 113. https://doi.org/10.1016/j.jcis.2019.06.080
  36. You D., Pan B., Jiang F., Zhou Y., Su W. // Appl. Surf. Sci. 2016. V. 363. P. 154. https://doi.org/10.1016/j.apsusc.2015.12.021
  37. Shahzad A., Rafiq K., Abid M.Z., Shah H.U.R., Rauf A., Hussain E. // Appl. Catal. A: Gen. 2025. V. 693. Art. 120101. https://doi.org/10.1016/j.apcata.2025.120101
  38. Sun H., Xiao Z., Zhao Z., Zhai S., An Q. // Appl. Surf. Sci. 2023. V. 611. Art. 155631. https://doi.org/10.1016/j.apsusc.2022.155631
  39. Wenhua X., Hu X., Liu E., Fan J. // Appl. Surf. Sci. 2018. V. 447. P. 263. https://doi.org/10.1016/j.apsusc.2018.04.048
  40. Islam A., Malek A., Islam M.T., Nipa F.Y., Raihan O., Mahmud H., Uddin M.E., Ibrahim M.L., Abdulkarreem-Alsultan G., Mondal A.H., Hasan M.M. et. al. // Int. J. Hydrogen Energy. 2025. V. 101. P. 173. https://doi.org/10.1016/j.ijhydene.2024.12.300
  41. Patnaik S., Sahoo D.P., Parida K. // Carbon. 2021. V. 172. P. 682. https://doi.org/10.1016/j.carbon.2020.10.073
  42. Kumaravel V., Imam M.D., Badreldin A., Chava R.K., Do J.Y., Kang M., Abdel-Wahab A. // Catalysts. 2019. V. 9. № 3. P. 276. https://doi.org/10.3390/catal9030276

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).