From regeneration to the evolution of development and philosophy: the work of professor Galina Korotkova (1924–2009), on the 100th anniversary of her birth

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Evolutionary and developmental biology are among the most dynamically developing areas of modern biology. Both have a long and turbulent history, especially in Russia (USSR). However, any science develops thanks to the breakthrough research of individual scientists and scientific teams. In this paper, we briefly analyzed the main theoretical works of Leningrad State University professor G. P. Korotkova (1924–2009), who made a significant contribution to general biology at the end of the twentieth century. G. P. Korotkova is known for her pioneering work in the field of regeneration of invertebrate animals and, first of all, sponges, evolutionary and philosophical aspects of biology. In particular, her contribution to the theoretical aspects of regenerative biology, to the development of philosophical aspects of the problems of wholenessis considered. The principles of her original hypothesis of the origin and phase evolution of ontogenesis are briefly outlined, as well as her ideas regarding the theoretical aspects of the biology and organization of sponges (Porifera).

Full Text

Restricted Access

About the authors

A. V. Ereskovsky

Koltzov Institute of Developmental Biology RAS; IMBE, CNRS, IRD, Aix Marseille University, Station Marine d’Endoume

Author for correspondence.
Email: aereskovsky@gmail.com
Russian Federation, Moscow, 119334; Rue de la Batterie des Lions, Marseille, 13007 France

I. Y. Dolmatov

Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences

Email: aereskovsky@gmail.com
Russian Federation, Vladivostok, 690041

References

  1. Афанасьев, В.Г., Проблема целостности в философии и биологии. Москва, Мысль, 1964. 416 с.
  2. Гегель, Г., Сочинения. Т. 5. Москва, Соцэкгиз, 1937, 716 с.
  3. Гонобоблева, Е.Л., Эмбриологические научно-исследовательские лаборатории Санкт-Петербургского государственного университета в годы после Великой Отечественной войны и до конца 90-х годов XX века: «советский» период, Истор-биол. исслед., 2024, Т. 16, № 1, c. 155–202. doi: 10.24412/2076–8176–2024–1–155–202
  4. Долматов, И.Ю., Вариативность механизмов регенерации у иглокожих, Биология моря, 2020, Т. 46, № 6, c. 363–376.
  5. Долматов, И.Ю., Машанов, В.С., Регенерация у голотурий. Владивосток, Дальнаука, 2007, 212 с.
  6. Ересковский, А.В., Сравнительная эмбриология губок. С.- Петербург. Изд. С.- Петербург. Унив., 2005, 304 с.
  7. Иванова-Казас, О.М., О некоторых спорных вопросах эволюционной эмбриологии, В кн. Эволюционные идеи в биологии, Полянский, Ю.И., Ред. Ленгиград, Изд.: Ленингр. Ун-та. 1984, с. 44–56.
  8. Исаева, В.В., Разнообразие онтогенезов у животных с бесполым размножением и пластичность раннего развития, Онтогенез, 2010, Т. 41, № 5, С. 340–352.
  9. Костюченко, Р.П., Козин, В.В., Купряшова, Е.Е., Регенерация и бесполое размножение у аннелид: клетки, гены и эволюция, Изв. РАН. Сер. биол., 2016, Т. 43, № 3, c. 231–241.
  10. Пучковский, С.В., Дискретность потоков жизни во времени: эволюционное значение биоквантов, Сибирский экол. журн., 1997, Т. 6, c. 553–558.
  11. Пучковский, С.В., Эволюция биосистем. Факторы микроэволюции и филогенеза в эволюционном пространстве-времени. Ижевск, Изд-во «Удмуртский университет», 2013, 444 с.
  12. Солонин, Ю.Н., Учение о целостности в перспективе новой методологической парадигмы, Философские науки, 2013, № 10, c. 8–23.
  13. Токин, Б.П., Иммунитет зародышей. Ленинград, Изд-во Ленинградского университета, 1955, 97с.
  14. Токин, Б.П., Регенерация и соматический эмбриогенез. Ленинград, Изд-во Ленинградского университета, 1959, 269 с.
  15. Шмальгаузен, И.И., Организм как целое в индивидуальном и историческом развитии, Москва, Наука, 1982, 383 с.
  16. Югай, Г.А., Диалектика части и целого. Алма-Ата, Наука, 1965, 171с.
  17. Bely, A.E., Nyberg, K.G., Evolution of animal regeneration: re-emergence of a field, Trends Ecol Evol., 2010, V. 3, pp. 161–170.
  18. Bideau, L., Kerner, P., Hui, J., Vervoort, M., Gazave, E., Animal regeneration in the era of transcriptomics, Cell. Mol. Life Sci., 2021, V. 78, pp. 3941–3956.
  19. Blackstone, N.W., Jasker, B.D., Phylogenetic considerations of clonality, coloniality, and mode of germline development in animals, J. Exp. Zool. B Mol. Dev. Evol., 2003, V. 297, pp. 35–47.
  20. Borisenko, I.E., Adamska, M., Tokina, D.B., Ereskovsky, A.V., Transdifferentiation is a driving force of regeneration in Halisarca dujardini (Demospongiae, Porifera), PeerJ, 2015, 3: e1211. https://doi.org/10.7717/peerj.1211
  21. Buss, L.W., Evolution, development, and the units of selection, Proc. Natl. Acad. Sci. USA., 1983, V. 80, pp. 1387–1391.
  22. Conceptual change in biology, Love, A.C., Ed., Dordrecht, Springer, 2015, 490 p.
  23. Ereskovsky, A.V., The Comparative Embryology of Sponges. Springer-Verlag, Dordrecht Heidelberg London New York, 2010, 329 p.
  24. Ereskovsky, A., Borisenko, I.E, Bolshakov, F.V., Lavrov, A.I., Whole-body regeneration in sponges: diversity, fine mechanisms and future prospects, Genes, 2021, V. 12, 506. https://doi.org/10.3390/genes12040506
  25. Ereskovsky, A.V., Tokina, D.B., Saidov, D.M., Baghdiguian, S., Le Goff, E., Lavrov, A.I.,. Transdifferentiation and mesenchymal-to-epithelial transition during regeneration in Demospongiae (Porifera), J. Exp. Zool. Part B: Mol. Dev. Evol., 2020, V. 334, pp. 37–58. doi: 10.1002/jez.b.22919.
  26. Ereskovsky, A., Lavrov, A., Porifera, In: Invertebrate Histology, LaDouceur, E.E.B., Ed John Wiley & Sons, Inc. 2021, pp. 19–54. https://doi.org/10.1002/9781119507697.ch2.
  27. Gaino, E., Manconi, R., Pronzato, R., Organizational plasticity as a successful conservative tactics in sponges, Animal Biology, 1995, V. 4. pp. 31–43.
  28. Hall, B.K., Evolutionary developmental biology (Evo-Devo): Past, present, and future, Evolution: Education and outreach, 2012, V. 5. pp. 184–193.
  29. Kovtun, M. F. Ontogenesis: a phenomenon and a process (on the problem of the evolution of ontogenesis), Vestnik zoologii, 2013, V. 47. pp. 1–10.
  30. Leys, S.P., Nichols, S.A., Adams, E.D.M., Epithelia and integration in sponges, Integr. Comp. Biol., 2009, V. 49, pp. 167–177.
  31. Loyola-Vargas, V.M., Ochoa-Alejo, N., (Eds.). Somatic Embryogenesis: Fundamental Aspectsand Applications, Springer International Publishing, Switzerland, 2016, 506 p. doi: 10.1007/978–3–319–33705–0.
  32. Mujib A. (Ed.). Somatic Embryogenesis in Ornamentals and Its Applications, Springer, India, 2016, 267 p. doi: 10.1007/978–81–322–2683–3_1.
  33. Ramírez-Mosqueda, M.A. (Ed). Somatic Embryogenesis, Methods in Molecular Biology, V. 2527, Humana, New York, NY, 2022, 276 p. https://doi.org/10.1007/978–1–0716–2485–2_1
  34. Reddien, P.W., The cellular and molecular basis for planarian regeneration, Cell, 2018, V. 175. pp. 327–345.
  35. Renard, E., Le Bivic, A., Borchiellini, C., Origin and Evolution of Epithelial Cell Types. In: Origin and Evolution of Metazoan Cell Types, Leys S., Hejnol, A., Eds. Taylor & Francis Group, LLC. 2021. pp. 94–119.
  36. Ribeiro, R.P., Ponz-Segrelles, G., Bleidorn, C., Aguado, M.T., Comparative transcriptomics in Syllidae (Annelida) indicates that posterior regeneration and regular growth are comparable, while anterior regeneration is a distinct process, BMC Genomics, 2019, V. 20, 855. https://doi.org/10.1186/s12864–019–6223-y
  37. Rinkevich B., Stem cells: autonomy interactors that emerge as causal agents and legitimate units of selection, In: Stem cells in marine organisms, Rinkevich, B., Matranga, V., Eds. Dordrecht, Springer, 2009, pp. 1–20.
  38. Rinkevich, B., Rinkevich, Y. The “Stars and Stripes”. Metaphor for Animal Regeneration-Elucidating two fundamental strategies along a continuum, Cells, 2013, V. 2, pp. 1–18. doi: 10.3390/cells2010001.
  39. Saurabh, B., Tanmoy, B. Somatic Embryogenesis and Organogenesis, Modern Applicat. Plant Biotechnol, Pharmac. Sci, 2015. pp. 209–230. doi: 10.1016/B978–0–12–802221–4.00006–6
  40. Skorentseva, K.V., Bolshakov, F.V., Saidova, A.A., Lavrov, A. I. Regeneration in calcareous sponge relies on ‘pursestring’ mechanism and the rearrangements of actin cytoskeleton, Cell and Tissue Research, 2023, V. 394, pp. 107–129. doi: 10.1007/s00441–023–03810–5.
  41. Slack, J.M.W., Animal regeneration: ancestral character or evolutionary novelty? EMBO Reports, 2017, V. 18, pp. 1497–1508.
  42. Waddington, C.H., Organisers and genes. Cambridge, University Press. 1940. 160 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. G. P. Korotkova. Photo 1944 Saratov.

Download (239KB)
3. Fig. 2. Graduate students of the Department of Embryology of LSU. Photo 1948. I. Schiffer, G. P. Korotkova, A. K. Dondua.

Download (177KB)
4. Fig. 3. Staff and graduate students of the Department of Embryology. Photo from 1953 First row (from left to right): A. P. Krylova, F. N. Yericheva, B. P. Tokin, I. I. Sokolov, O. M. Ivanova-Kazas. Second row: N. S. Gabaeva, G. P. Korotkova, Yu. A. Ostrometskaya, N. I. Orekhova. Third row: M. Ibragimov, E. B. Krichinskaya, B. Mesarosh, L. S. Priezdeva, A. K. Dondua.

Download (362KB)
5. Fig. 4. Employees of the Laboratory of Ontogenesis of the Biological Institute of LSU. Photo from 1978 From left to right: unknown, G. P. Korotkova, N. P. Alekseeva, I. V. Pylilo, S. M. Efremova, A. G. Sinitsina.

Download (283KB)
6. Rhys. 5. G. P. Korotkova and B. P. TOKIN. Photo 1973.

Download (256KB)
7. Fig. 6. G. P. Korotkova – working with the proofreading of the book "Principles of Integrity". Photo 1968.

Download (167KB)
8. Fig. 7. G. P. Korotkova. Photo from 1980

Download (192KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».