Прижизненная диагностика прионных болезней

Обложка

Цитировать

Полный текст

Аннотация

В обзоре представлено современное состояние проблемы диагностики прионных болезней (ПБ) человека и животных с кратким описанием их этиологии и патогенеза. Показано, что понимание природы этиологического агента ПБ определило их зоонозный потенциал и привело к развитию высокоспецифичных иммунологических методов диагностики, направленных на выявление инфекционной изоформы прионного белка (PrPd) как единственного маркёра заболевания. В этой связи кратко приведены результаты исследований, включая собственные, касающиеся конверсии нормальных молекул прионного белка (PrPc) в PrPd, получения моноклональных антител (МКАТ) и их апробации в качестве иммунодиагностических реагентов для посмертного выявления PrPd в различных форматах иммуноанализа. Особо выделен вопрос, связанный с разработкой методов прижизненной диагностики ПБ. В связи с этим подробно рассматривается методика амплификации аминокислотных последовательностей с использованием индуцированной вибрацией конверсии PrPc в PrPd в режиме реального времени (ИВК-РВ). Приводятся результаты последних исследований по оценке чувствительности, специфичности и воспроизводимости данного метода, проведённых в различных лабораториях мира. Полученные данные свидетельствуют о том, что ИВК-РВ в настоящее время является наиболее перспективным лабораторным методом исследованния для выявления PrPd в биологическом материале на доклинической стадии заболевания. Отмечен значительный вклад учёных США во внедрение данной методики в клиническую практику на модели диагностики хронической изнуряю- щей болезни диких копытных (ХИБ). Возможное дальнейшее распространение ХИБ в популяциях лосей и оленей на межграничных с Россией территориях, также как и установленный факт алиментарной передачи ХИБ макакам, свидетельствуют об угрозе появления ПБ в нашей стране. В заключение подчёркнута важность разработки новых сверхчувствительных и/или селективных компонентов известных методов идентификации PrPd с точки зрения оценки рисков создания искусственных инфекционных прионных белков in vivo или in vitro, прежде всего новых патогенных изоформ («штаммов») и синтетических прионов.

Об авторах

С. Л. Кальнов

ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Email: kalnov.sergei@mail.ru
ORCID iD: 0000-0002-3130-4790

канд. биол. наук, старший научный сотрудник, лаборатория средств специфической профилактики

123098, Москва

Россия

О. А. Верховский

АНО «Научно-исследовательский институт диагностики и профилактики болезней человека и животных»

Email: info@dpri.ru
ORCID iD: 0000-0003-0784-9341

д-р биол. наук, профессор, президент 

123098, Москва

Россия

В. В. Цибезов

ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Email: tsibezov@yandex.ru
ORCID iD: 0000-0003-2150-5764

канд. биол. наук, ведущий научный сотрудник, лаборатория средств специфической профилактики

123098, Москва

Россия

К. П. Алексеев

ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Email: kalekseev@hotmail.com
ORCID iD: 0000-0001-9536-3127

канд. биол. наук, старший научный сотрудник, лаборатория прикладной вирусологии и биотехнологии

123098, Москва

Россия

Д. А. Чудакова

Школа биологических наук, Оклендский университет

Email: kitsyne1@yandex.ru
ORCID iD: 0000-0002-9354-6824

научный сотрудник, биологический факультет

Окленд 1010

Новая Зеландия

И. Е. Филатов

ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Email: filat69rus@yandex.ru
ORCID iD: 0000-0001-5274-224X

аспирант лаборатории молекулярной диагностики

123098, Москва

Россия

Т. В. Гребенникова

ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Автор, ответственный за переписку.
Email: t_grebennikova@mail.ru
ORCID iD: 0000-0002-6141-9361

д-р биол. наук, профессор, чл.-корр. РАН, заведующая лабораторией молекулярной диагностики

123098, Москва

Россия

Список литературы

  1. Gambetti P., Russo C. Human brain amyloidosis. Nephrol. Dial. Transplant. 1998; 13(Suppl. 7): 33–40. https://doi.org/10.1093/ndt/13.suppl_7.33.
  2. Lachmann H.J., Hawkins P.N. Systemic amyloidosis. Curr. Opin. Pharm. 2006; 6(2): 214–20. https://doi.org/10.1016/j.coph.2005.10.005.
  3. McKinley M.P., Prusiner S.B. Ultrastructural Studies of Prions. In: Chesebro B.W., ed. Transmissible Spongiform Encephalopathies: Current Topics in Microbiology and Immunology. Berlin, Heidelberg: Springer; 1991. https://doi.org/10.1007/978-3-642-76540-7_5.
  4. Prusiner S.B. Novel proteinaceous infection particles cause scrapie. Science. 1982; 216(4542): 136–44. https://doi.org/10.1126/science.6801762.
  5. Laurent M. Autocatalytic processes in cooperative mechanisms of prion diseases. FEBS Lett. 1997; 407(1): 1–6. https://doi.org/10.1016/s0014-5793(97)00310-4.
  6. Bieschke J., Weber P., Sarafoff N., Beekes M., Giese A., Kretzschmar H. Autocatalytic self-propagation of misfolded prion protein. Proc. Natl. Acad. Sci. USA. 2004; 101(33): 12207–11. https://doi.org/10.1073/pnas.0404650101.
  7. Harris D.A. Cellular biology of prion diseases. Clin. Microbiol. Rev. 1999; 12(3): 429–44.
  8. Hegde R.S., Mastrianni J.A., Scott M.R., DeFea K.A., Tremblay P., Torchia M., et al. A transmembrane form of the prion protein in neurodegenerative disease. Science. 1998; 279(5352): 827–34. https://doi.org/10.1126/science.279.5352.827.
  9. Mead S. Prion disease genetics. Eur. J. Hum. Genet. 2006; 14(3): 273–81. https://doi.org/10.1038/sj.ejhg.5201544.
  10. Bessen R.A., Kocisko D.A., Raymond G.J., Nandan S., Lansbury P.T., Caughey B. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature. 1995; 375(6533): 698–700. https://doi.org/10.1038/375698a0.
  11. Collinge J., Clarke A.R. A general model of prion strains and their pathogenicity. Science. 2007; 318(5852): 930–6. https://doi.org/10.1126/science.1138718.
  12. Prusiner S.B. Prions. Proc. Natl. Acad. Sci. USA. 1998; 95(23): 13363–83. https://doi.org/10.1073/pnas.95.23.13363.
  13. Baskakov I.V., Breydo L. Converting the prion protein: what makes the protein infectious. Biochim. Biophys. Acta. 2007; 1772(6): 692–703. https://doi.org/10.1016/j.bbadis.2006.07.007.
  14. Benestad S.L., Telling G.C. Chronic wasting disease: an evolving prion disease of cervids. Handb. Clin. Neurol. 2018; 153: 135–51. https://doi.org/10.1016/B978-0-444-63945-5.00008-8.
  15. Sakudo A. Chronic wasting disease: current assessment of transmissibility. Curr. Issues Mol. Biol. 2020; 36: 13–22. https://doi.org/10.21775/cimb.036.013.
  16. Зуев В.А., Завалишин И.А., Ройхель В.М. Прионные болезни человека и животных. Руководство для врачей. М.: Медицина; 1999.
  17. Зуев В.А. Медленные инфекции человека и животных. Вопросы вирусологии. 2014; 59(5): 5–12.
  18. Надточей Г.А., Шубин В.А., Юров К.П., Коромыслов Г.Ф. Экспериментальные прионные инфекции у животных. Труды Всероссийского НИИ экспериментальной ветеринарии им. Я.Р. Коваленко. 1999; 72: 299–305.
  19. Рыбаков С.С. Скрепи и другие прионные болезни животных и человека. Владимир: Фолиант; 2003.
  20. Рыбаков С.С. Губкообразная энцефалопатия крупного рогато- го скота. Владимир: Фолиант; 2007.
  21. Надточей Г.А. Прионные инфекции: диагностика, профилактика и меры борьбы. Бюллетень Всесоюзного ордена Ленина научно-исследовательского института экспериментальной ветеринарии им. Я.Р. Коваленко. 1996; 77: 5–10.
  22. Суворов В.С., Шубин В.А., Надточей Г.А., Юров К.П., Санджаев Д.Д. Патоморфологическая дифференциация прионных инфекций: скрепи овец и губкообразная энцефалопатия крупного рогатого скота. Труды Всероссийского НИИ экспериментальной ветеринарии им. Я.Р. Коваленко. 2003; 73: 60–3.
  23. Кальнов С.Л., Григорьев В.Б., Алексеев К.П., Власова А.Н., Гибадулин Р.А., Покидышев А.Н. и др. Получение и характеристика полноразмерного рекомбинантного PrPc белка крупного рогатого скота. Бюллетень экспериментальной биологии и медицины. 2006; 141(1): 68–71.
  24. Grigorjev V.B., Kal’nov S.L., Pokidyshev A.N., Tsibezov V.V., Balandina M.V., Gibadulin R.A., et al. Fibrillization of recombinant bovine prion protein (rec-PrP) in vitro. Dokl. Biochem. Biophys. 2008; 420: 112–4. https://doi.org/10.1134/S1607672908030046.
  25. Кальнов С.Л., Верховский О.А., Алипер Т.И. Прионные болезни животных. В кн.: Львов Д.К., ред. Руководство по вирусологии. Вирусы и вирусные инфекции человека и животных. М.: МИА; 2013: 910–21.
  26. Покидышев А.Н. Характеристика рекомбинантного прионного белка крупного рогатого скота (Bos taurus) и разработка методов выявления патологической изоформы прионов: Дис. … канд. биол. наук. М.; 2009.
  27. Григорьев В.Б., Покидышев А.Н., Кальнов С.Л., Клименко С.М. Методы диагностики прионных заболеваний. Вопросы вирусологии. 2009; 54(5): 4–9.
  28. O’Rourke K.I., Baszler T.V., Parish S.M., Knowles D.P. Preclinical detection of PrPSc in nictitating membrane lymphoid tissue of sheep. Vet. Rec. 1998; 142(18): 489–91. https://doi.org/10.1136/vr.142.18.489.
  29. O’Rourke K.I., Baszler T.V., Besser T.E., Miller J.M., Cutlip R.C., Wells G.A., et al. Preclinical diagnosis of scrapie by immunohistochemistry of third eyelid lymphoid tissue. J. Clin. Microbiol. 2000; 38(9): 3254–9. https://doi.org/10.1128/JCM.38.9.3254-3259.2000.
  30. Spraker T.R., VerCauteren K.C., Gidlewski T., Schneider D.A., Munger R., Balachandran A., et al. Antemortem detection of PrPCWD in pre-clinical, ranch-raised Rocky Mountain Elk (Cervus elaphus nelsoni) by biopsy of the rectal mucosa. J. Vet. Diagn. Invest. 2009; 21(1): 15–24. https://doi.org/10.1177/104063870902100103.
  31. Andréoletti O., Berthon P., Marc D., Sarradin P., Grosclaude J., van Keulen L., et al. Early accumulation of PrPsc in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. J. Gen. Virol. 2000; 81(12): 3115–26. https://doi.org/10.1099/0022-1317-81-12-3115.
  32. Hilton D.A., Ghani A.C., Conyers L., Edwards P., McCardle L., Ritchie D., et al. Accumulation of prion protein in tonsil and appendix: review of tissue samples. Brit. Med. J. 2002; 325(7365): 633–4. https://doi.org/10.1136/bmj.325.7365.633.
  33. Saborio G.P., Permanne B., Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 2001; 411(6839): 810–3. https://doi.org/10.1038/35081095.
  34. Saa P., Castilla J., Soto C. Presymptomatic detection of prions in blood. Science. 2006; 313(5783): 92–4. https://doi.org/10.1126/science.1129051.
  35. Atarashi R., Wilham J.M., Christensen L., Hughson A.G., Moore R.A., Johnson L.M., et al. Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat. Methods. 2008; 5(3):211–2. https://doi.org/10.1038/nmeth0308-211.
  36. Atarashi R., Sano K., Satoh K., Nishida N. Real-time quaking-induced conversion: a highly sensitive assay for prion detection. Prion. 2011; 5(3): 150–3. https://doi.org/10.4161/pri.5.3.16893.
  37. Henderson D.M., Davenport K.A., Haley N.J., Denkers N.D., Mathiason C.K., Hoover E.A. Quantitative assessment of prion infectivity in tissues and body fluids by real-time quaking-induced conversion. J. Gen. Virol. 2015; 96(Pt. 1): 210–9. https://doi.org/10.1099/vir.0.069906-0.
  38. Dassanayake R.P., Orrú C.D., Hughson A.G., Caughey B., Graça T., Zhuang D., et al. Sensitive and specific detection of classical scrapie prions in the brains of goats by real-time quaking-induced conversion. J. Gen. Virol. 2016; 97(3): 803–12. https://doi.org/10.1099/jgv.0.000367.
  39. Orrú C.D., Groveman B.R., Raymond L.D., Hughson A.G., Nonno R., Zou W., et al. Bank vole prion protein as an apparently universal substrate for RT-QuIC-based detection and discrimination of prion strains. PLoS Pathog. 2015; 11(6): e1004983. https://doi.org/10.1371/journal.ppat.1004983.
  40. Favole A., Mazza M., Vallino Costassa E., D’Angelo A., Lombardi G., Marconi P., et al. Early and pre-clinical detection of prion seeding activity in cerebrospinal fluid of goats using real-time quaking- induced conversion assay. Sci. Rep. 2019; 9(1): 6173. https://doi.org/10.1038/s41598-019-42449-7.
  41. Davenport K.A., Hoover C.E., Denkers N.D., Mathiason C.K., Hoover E.A. Modified protein misfolding cyclic amplification overcomes real-time quaking-induced conversion assay inhibitors in deer saliva to detect Chronic Wasting Disease prions. J. Clin. Microbiol. 2018; 56(9): e00947-18. https://doi.org/10.1128/JCM.00947-18.
  42. Mammana A., Baiardi S., Rossi M., Franceschini A., Donadio V., Capellari S., et al. Detection of prions in skin punch biopsies of Creutzfeldt-Jakob disease patients. Ann. Clin. Translat. Neurol. 2020; 7(4): 559–64. https://doi.org/10.1002/acn3.51000.
  43. Bongianni M., Orrú C.D., Groveman B.R., Sacchetto L., Fiorini M., Tonoli G., et al. Diagnosis of human prion disease using real-time quaking-induced conversion testing of olfactory mucosa and cerebrospinal fluid samples. JAMA Neurol. 2017; 74(2): 155–62. https://doi.org/10.1001/jamaneurol.2016.4614.
  44. McGuire L.I., Poleggi A., Poggiolini I., Suardi S., Grznarova K., Shi S., et al. Cerebrospinal fluid real-time quaking-induced conversion is a robust and reliable test for sporadic Creutzfeldt-Jakob disease: An international study. Ann. Neurol. 2016; 80(1): 160–5. https://doi.org/10.1002/ana.24679.
  45. Cramm M., Schmitz M., Karch A., Mitrova E., Kuhn F., Schroeder B., et al. Stability and reproducibility underscore utility of RT-QuIC for diagnosis of Creutzfeldt-Jakob disease. Mol. Neurobiol. 2016; 53(3): 1896–904. https://doi.org/10.1007/s12035-015-9133-2.
  46. Haley N.J., Donner R., Henderson D.M., Tennant J., Hoover E.A., Manca M., et al. Cross-validation of the RT-QuIC assay for the antemortem detection of chronic wasting disease in elk. Prion. 2020; 14(1): 47–55. https://doi.org/10.1080/19336896.2020.1716657.
  47. Hwang S., Tatum T., Lebepe-Mazur S., Nicholson E.M. Preparation of lyophilized recombinant prion protein for TSE diagnosis by RTQuIC. BMC Res. Notes. 2018; 11(1): 895. https://doi.org/10.1186/s13104-018-3982-5.
  48. Koutsoumanis K., Allende A., Alvarez-Ordoñez A., Bolton D., Bover-Cid S., Chemaly M., et al. Update on chronic wasting disease (CWD). EFSA J. 2019; 17(11): e05863. https://doi.org/10.2903/j.efsa.2019.5863.
  49. Schaetzl H. One Health Workshop Series 2020: Chronic Wasting Disease. Zoonotic potential of CWD. Available at: https://ucalgary.zoom.us/rec/play/hja-r64RAavwd07Wv9-D4QAly-36SAILGC_QNqu6j2f6c2F4WhsgM-opx5x56pIDu41zgUwR4moiOAkPf.9-DQ27JE9yCVhyA-?startTime=1602079098000.
  50. Orrú C.D., Wilham J.M., Raymond L.D., Kuhn F., Schroeder B., Raeber A.J., et al. Prion disease blood test using immunoprecipitation and improved quaking-induced conversion. mBio. 2011; 2(3):e00078-11. https://doi.org/10.1128/mBio.00078-11.
  51. Denkers N.D., Henderson D.M., Mathiason C.K., Hoover E.A. Enhanced prion detection in biological samples by magnetic particle extraction and real-time quaking-induced conversion. J. Gen. Virol. 2016; 97(8): 2023–9. https://doi.org/10.1099/jgv.0.000515.
  52. Haley N.J., Richt J.A., Davenport K.A., Henderson D.M., Hoover E.A., Manca M., et al. Design, implementation, and interpretation of amplification studies for prion detection. Prion. 2018; 12(2): 73–82. https://doi.org/10.1080/19336896.2018.1443000.
  53. Metrick M.A., do Carmo Ferreira N., Saijo E., Hughson A.G., Kraus A., Orrú C.D., et al. Million-fold sensitivity enhancement in proteopathic seed amplification assays for biospecimens by Hofmeister ion comparisons. Proc. Natl. Acad. Sci. USA. 2019; 116(46): 23029–39. https://doi.org/10.1073/pnas.1909322116.
  54. Saa P., Cervenakova L. Protein misfolding cyclic amplification (PMCA): Current status and future directions. Virus Res. 2015; 207:47–61. https://doi.org/10.1016/j.virusres.2014.11.007.
  55. Seed C.R., Hewitt P.E., Dodd R.Y., Houston F., Cervenakova L. Creutzfeldt-Jakob disease and blood transfusion safety. Vox Sang. 2018; 113(3): 220–31. https://doi.org/10.1111/vox.12631.
  56. Kim C., Xiao X., Chen S., Haldiman T., Smirnovas V., Kofskey D., et al. Artificial strain of human prions created in vitro. Nat. Commun. 2018; 9(1): 2166. https://doi.org/10.1038/s41467-018-04584-z.
  57. Barria M.A., Libori A., Mitchell G., Head M.W. Susceptibility of human prion protein to conversion by Chronic Wasting Disease prions. Emerg. Infect. Dis. 2018; 24(8): 1482–9. https://doi.org/10.3201/eid2408.161888.
  58. Зуев В.А., Кальнов С.Л., Куликова Н.Ю., Гребенникова Т.В. Современное состояние проблемы прионных болезней и причины их опасности для человека и животных. Вопросы вирусологии. 2020; 65(2): 71–6. https://doi.org/10.36233/0507-4088-2020-65-2-71-76.
  59. Saijo E., Groveman B.R., Kraus A., Metrick M., Orrú C.D., Hughson A.G., et al. Ultrasensitive RT-QuIC seed amplification assays for disease-associated Tau, α‑synuclein, and prion aggregates. Methods Mol. Biol. 2019; 1873: 19–37. https://doi.org/10.1007/978-1-4939-8820-4_2.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кальнов С.Л., Верховский О.А., Цибезов В.В., Алексеев К.П., Чудакова Д.А., Филатов И.Е., Гребенникова Т.В., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».