Genetic diversity of the mumps viruses (Paramyxoviridae: Orthorubulavirus: Mumps orthorubulavirus): an overview

封面

如何引用文章

全文:

详细

Mumps is an infectious disease controlled by specific vaccine prophylaxis. To date, its social and epidemiological significance remains high. This is evidenced by the process of developing and implementing into the health care practices of many countries a set of measures for surveillance of mumps. In the Russian Federation, the National Program «Elimination of measles and rubella and achievement of sporadic morbidity with epidemic mumps in the Russian Federation (2021–2025)» and the national plan for its implementation were adopted in 2021. The basis for the adoption of these documents was the development of the domestic trivalent vaccine for the prevention of measles, rubella and mumps, Vaktrivir, and the start of its clinical application. The availability of this vaccine will make the epidemiological surveillance of mumps to be a part of the existing system of appropriate measures for measles and rubella. The fulfillment of this set of tasks involves the study of the molecular epidemiology of the mumps virus (MuV) with possible subsequent implementation of its methodology into the surveillance actions. In this connection, this work was aimed at presenting the data on global genetic diversity of MuV as well as its genotyping methods in a systematized form. The analysis of MuV global genetic diversity in different years will be the starting point in the subsequent development of approach to monitoring virus strains circulating in the Russian Federation.

作者简介

T. Chekhlyaeva

FSBI «Gabrichevsky research institute for epidemiology and microbiology» of the Surveillance of Consumer Rights
Protection and Human Welfare (Rospotrebnadzor)

编辑信件的主要联系方式.
Email: chekhliaeva@gabrich.ru
ORCID iD: 0000-0003-0838-7353

Tatiana S. Chekhliaeva, head of applied immunochemistry laboratory G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Moscow, adm. Makarov str, 10

俄罗斯联邦

D. Erokhov

FSBI «Gabrichevsky research institute for epidemiology and microbiology» of the Surveillance of Consumer Rights
Protection and Human Welfare (Rospotrebnadzor)

Email: erokhovdenis@gmail.com
ORCID iD: 0000-0001-7163-7840

Denis V. Erokhov, junior research associate of applied immunochemistry laboratory G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Moscow, adm. Makarov str, 10

俄罗斯联邦

I. Andrievskaya

FSBI «Gabrichevsky research institute for epidemiology and microbiology» of the Surveillance of Consumer Rights
Protection and Human Welfare (Rospotrebnadzor)

Email: andrievskaya.iri@mail.ru
ORCID iD: 0000-0003-2997-942X

Irina Yu. Andrievskaya, research associate of applied immunochemistry laboratory G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Moscow, adm. Makarov str, 10

俄罗斯联邦

P. Zherdeva

FSBI «Gabrichevsky research institute for epidemiology and microbiology» of the Surveillance of Consumer Rights
Protection and Human Welfare (Rospotrebnadzor)

Email: polya-zherdeva@mail.ru
ORCID iD: 0000-0002-7635-4353

Polina E. Zherdeva, junior research associate of applied immunochemistry laboratory G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Moscow, adm. Makarov str, 10

俄罗斯联邦

N. Tikhonova

FSBI «Gabrichevsky research institute for epidemiology and microbiology» of the Surveillance of Consumer Rights
Protection and Human Welfare (Rospotrebnadzor)

Email: tikhmail@mail.ru
ORCID iD: 0000-0002-8762-4355

Nina T. Tikhonova, Dr. Sci. (Biology), Professor, chief research associate of cytokines laboratory G.N. Gabrichevsky Moscow research institute of epidemiology and microbiology Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Moscow, adm. Makarov str, 10

俄罗斯联邦

参考

  1. Онищенко Г.Г. Оценка и управление рисками для здоровья как эффективный инструмент решения задач обеспечения санитарно-эпидемиологического благополучия населения Российской Федерации. Анализ риска здоровью. 2013; (1): 4–14.
  2. Dittrich S., Hahné S., van Lier A., Kohl R., Boot H., Koopmans M., et al. Assessment of serological evidence for mumps virus infection in vaccinated children. Vaccine. 2011; 29(49): 9271–5. https://doi.org/10.1016/j.vaccine.2011.09.072
  3. Hviid A., Rubin S., Mühlemann K. Mumps. Lancet. 2008; 371(9616): 932–44. https://doi.org/10.1016/S0140-6736(08)60419-5
  4. Mumps virus nomenclature update: 2012. Wkly Epidemiol. Rec. 2012; 87(22): 217–24.
  5. ВОЗ. Охват иммунизацией. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/immunization-coverage (accessed January 16, 2021).
  6. Mumps virus vaccines. Wkly Epidemiol. Rec. 2007; 82(07): 51–60.
  7. Фельдблюм И.В., Романенко В.В., Субботина К.А., Меньшикова М.Г., Окунева И.А., Мусихина А.Ю., и др. Безопасность и иммунологическая эффективность отечественной комбинированной тривакцины для профилактики кори, краснухи и эпидемического паротита Вактривир при иммунизации детей 12 месяцев и 6 лет (результаты простого слепого мультицентрового сравнительного рандомизированного клинического исследования). Эпидемиология и Вакцинопрофилактика. 2021; 20(1): 32–43. https://doi.org/10.31631/2073-3046-2021-20-1-32-43
  8. Государственный реестр лекарственных средств. Паротит. Available at: https://grls.rosminzdrav.ru/grls.aspx?s=паротит&m=mnn (accessed January 14, 2021).
  9. Maganga G.D., Iroungou B.A., Bole-Feysot C., Leroy E.M., Touré Ndouo F.S., Berthet N. Complete genome sequence of mumps virus genotype G from a vaccinated child in Franceville, southeastern Gabon, in 2013. Genome Announc. 2014; 2(6): e00972-14. https://doi.org/10.1128/genomeA.00972-14
  10. Nöjd J., Tecle T., Samuelsson A., Orvell C. Mumps virus neutralizing antibodies do not protect against reinfection with a heterologous mumps virus genotype. Vaccine. 2001; 19(13-14): 1727–31. https://doi.org/10.1016/s0264-410x(00)00392-3
  11. Tipples G., Hiebert J. Detection of measles, mumps, and rubella viruses. In: Stephenson J., Warnes A., eds. Diagnostic Virology Protocols. Totowa, NJ: Humana Press; 2010: 183–93. https://doi.org/10.1007/978-1-60761-817-1_11
  12. Jin L., Örvell C., Myers R., Rota P.A., Nakayama T., Forcic D., et al. Genomic diversity of mumps virus and global distribution of the 12 genotypes. Rev. Med. Virol. 2015; 25(2): 85–101. https://doi.org/10.1002/rmv.1819
  13. Шульга С.В., Цвиркун О.В., Тихонова Н.Т., Чехляева Т.С., Герасимова А.Г., Мамаева Т.А., и др. Методические рекомендации МР 3.1.2.0135–18. Генетический мониторинг циркуляции вирусов кори и краснухи. М.; 2019. Available at: https://pdf.standartgost.ru/catalog/Data2/1/4293730/4293730377.pdf (accessed January 14, 2021).
  14. Aoki Y., Matoba Y., Tanaka S., Yahagi K., Itagaki T., Katsushima F., et al. Chronological changes of mumps virus genotypes in Japan between 1999–2013. Infect. Dis. (Lond.). 2016; 48(7): 524–9. https://doi.org/10.3109/23744235.2016.1163730
  15. Catellanos A., Gavilan A.M., Echevarria J.E., Fernandez-Garcia A. Increase in variability of mumps virus genotype G strains in Spain, 2005–2018. Available at: https://www.ncbi.nlm.nih.gov/nuccore/MN567354.1 (accessed January 14, 2021).
  16. Woo G.K.S., Chan S.C.H., Lo J.Y.C. Mumps virus small hydrophobic (SH) protein gene detected in Hong Kong. Available at: https://www.ncbi.nlm.nih.gov/popset/?term=KF031046.1 (accessed January 14, 2021).
  17. Hiebert J., Severini A. Mumps surveillance in Canada. Available at: https://www.ncbi.nlm.nih.gov/popset/?term=MN911767.1 (accessed January 14, 2021).
  18. Semeiko G., Hubschen J., Shimanovich V., Svirchevskaya E., Yermalovich M., Muller C., et al. Mumps in Republic of Belarus. Available at: https://www.ncbi.nlm.nih.gov/nuccore/KC192656.1 (accessed January 14, 2021).
  19. Jeevan M., Thangam M. Mumps virus strain MuVi/Chennai. IND/23.12[N](Vac) small hydrophobic protein (SH) gene, complete cds. Available at: https://www.ncbi.nlm.nih.gov/nuccore/JX894237.1 (accessed January 14, 2021).
  20. Benega A., de Paiva T.M. Mumps virus genotypes identified during disease outbreaks in the state of São Paulo, Brazil: 2011–2016. Rev. Inst. Adolfo Lutz. 2016; 75: 1712.
  21. Hiebert J., Schulz H., Zubach V., Severini A. Mumps surveillance in Canada. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=1796908945 (accessed January 14, 2021).
  22. Vermeire T., Gouma S., Van Gucht S., Martens L., Hutse V., Cremer J., et al. Differences among mumps virus surface proteins between genotype G and other genotypes and their potential effect on mumps virus immunity and pathogenesis. J. Clin. Virol. 2016; (82): S20.
  23. Inou Y., Nakayama T., Yoshida N., Uejima H., Yuri K., Kamada M., et al. Molecular epidemiology of mumps virus in Japan and proposal of two new genotypes. J. Med. Virol. 2004; 73(1): 97–104. https://doi.org/10.1002/jmv.20065
  24. Jin L., Beard S., Brown D.W. Genetic heterogeneity of mumps virus in the United Kingdom: identification of two new genotypes. J. Infect. Dis. 1999; 180(3): 829–33. https://doi.org/10.1086/314957
  25. Cui A., Myers R., Xu W., Jin L. Analysis of the genetic variability of the mumps SH gene in viruses circulating in the UK between 1996 and 2005. Infect. Genet. Evol. 2009; 9(1): 71–80. https://doi.org/10.1016/j.meegid.2008.10.004
  26. Pattamadilok S., Incomserb P., Sungdee A., Lukebua A., Kumperasart S. Characterization of Mumps virus genotypes in Thailand during 2007–2008: first report. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=169907848 (accessed January 14, 2021).
  27. Hübschen J.M., Vilivong K., Souvannaso C., Black A.P., Lütteke N., Samountry B., et al. High prevalence of mumps in Lao People’s Democratic Republic. Clin. Microbiol. Infect. 2014; 20(10): PO664–O671. https://doi.org/10.1111/1469-0691.12586
  28. Cheng W.Y., Liu M.T. Molecular characteristics of mumps viruses isolated in Taiwan from 2006 to 2016. Heliyon. 2018; 4(2): e00518. https://doi.org/10.1016/j.heliyon.2018.e00518
  29. Wiman A., Brytting M. Mumps virus strain MuVs/Malmo. SWE/35.08 SH (SH) gene, complete cds. Available at: https://www.ncbi.nlm.nih.gov/nuccore/KF840219.1 (accessed January 14, 2021).
  30. Woo G.K.S., Chan S.C.H., Lo J.Y.C. Mumps virus strain MuVs/ HongKong.CHN/10.09 genotype J small hydrophobic protein gene, complete cds. Available at: https://www.ncbi.nlm.nih.gov/nuccore/KF297615.1 (accessed January 14, 2021).
  31. Rivailler P., Hickman C., Rota P. Mumps surveillance in the United States. Available at: https://www.ncbi.nlm.nih.gov/nuccore/KF143768.1 (accessed January 14, 2021).
  32. Castellanos A., Gavilan A.M., Echevarria J.E., Fernandez-Garcia A. Increase in variability of mumps virus genotype G strains in Spain, 2008-2019. Available at: https://www.ncbi.nlm.nih.gov/nuccore/MT858762.1 (accessed January 14, 2021).
  33. Sherrard L., Hiebert J., Cunliffe J., Mendoza L., Cutler J. Measles surveillance in Canada: 2015. Can. Comm. Dis. Rep. 2016; 42(7): 139–45. https://doi.org/10.14745/ccdr.v42i07a01
  34. McNall R.J., Hickman C., Rota P. Mumps surveillance in the United States. Available at: https://www.ncbi.nlm.nih.gov/nuccore/KM104659.2 (accessed January 14, 2021).
  35. Hiebert J., Schulz H., Zubach V., Severini A. Mumps surveillance in Canada. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=1796908941 (accessed January 14, 2021).
  36. Kim S.T., Kim Y.J., Yang J.S., Nam J.G., Kim K., Kim S.S., et al. Genetic characteristics of mumps viruses isolated in Korea from 2007 to 2012. J. Med. Virol. 2016; 88(9): 1479–86. https://doi.org/10.1002/jmv.24515
  37. Cilla G., Montes M., Zapico M.S., Piñeiro L., Satrustegi M., Pérez-Yarza E.G., et al. Genetic characterization of historical epidemic mumps viruses in northern Spain, 1987–1990. Infect. Genet. Evol. 2014; 28: 5–10. https://doi.org/10.1016/j.meegid.2014.08.025
  38. Urbano P.R., Fujita D.M., Romano C.M. Reemergence of mumps in São Paulo, Brazil – the urgent need for booster shot campaign to prevent a serious infectious disease. Rev. Soc. Bras. Med. Trop. 2017; 50(4): 535–8. https://doi.org/10.1590/0037-8682-0320-2016
  39. Wharton A.K., Hickman C.J., Rota P.A. Mumps surveillance in the United States. Available at: https://www.ncbi.nlm.nih.gov/nuccore/MN639479.1 (accessed January 14, 2021).
  40. Wiman A., Brytting M. Mumps orthorubulavirus small hydrophobic protein (SH) gene, complete cds. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=742524649 (accessed January 14, 2021).
  41. Bodewes R., van de Nes-Reijnen L. Molecular surveillance mumps viruses in the Netherlands, 2018–2019. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=1654161158 (accessed January 14, 2021).
  42. Sarmah K., Sarma K., Borkakoty B. Circulating Genotypes of MuV in Assam. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=2104551332 (accessed January 14, 2021).
  43. Mag R., Rao C. Genotyping of Mumps virus. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=1170980933 (accessed January 14, 2021).
  44. Baggieri M., Rovida F., Marchi A., Zoncada A., Fornabaio C., Bucci P., et al. A case of mumps encephalitis imported to Italy from India. J. Med. Virol. 2020; 92(12): 2894–6. https://doi.org/10.1002/jmv.26263
  45. Tallo T., Brytting M. Mumps orthorubulavirus small hydrophobic protein (SH) gene, complete cds. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=1479792882 (accessed January 14, 2021).
  46. Kidokoro M., Tuul R., Komase K., Nymadawa P. Characterization of mumps viruses circulating in Mongolia: identification of a novel cluster of genotype H. J. Clin. Microbiol. 2011; 49(5): 1917–25. https://doi.org/10.1128/JCM.02387-10
  47. Nedeljkovic J.M., Rakic Adrovic S. Mumps strains isolated in Serbia in 2009. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=374278706 (accessed January 14, 2021).
  48. Akcali A., Yilmaz N., Uyar Y., Ertek M., Buzgan T. Genotyping of mumps virus circulating in Turkey in the 2006–2007 winter season. Arch. Virol. 2009; 154(11): 1807–12. https://doi.org/10.1007/s00705-009-0519-1
  49. Wiman A., Brytting M. Mumps orthorubulavirus SH (SH) gene, complete cds. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=578024378 (accessed January 14, 2021).
  50. Wiman A., Brytting M. Mumps orthorubulavirus small hydrophobic protein (SH) gene, complete cds. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=1043500449 (accessed January 14, 2021).
  51. Dembinski J.L. Mumps virus genotype H strain MuVs/Oslo. NOR/31.19[H] small hydrophobic protein (SH) gene, complete cds. Available at: https://www.ncbi.nlm.nih.gov/nuccore/MT339433.1 (accessed January 14, 2021).
  52. Akiyoshi K., Suga T. Genotyping of mumps virus strains detected in Kobe city from 1991 to 2012. Jpn J. Infect. Dis. 2014; 67(4): 323–6. https://doi.org/10.7883/yoken.67.323
  53. Cui A., Zhu Z., Chen M., Zheng H., Liu L., Wang Y., et al. Epidemiologic and genetic characteristics of mumps viruses isolated in China from 1995 to 2010. Infect. Genet. Evol. 2014; 21: 384–90. https://doi.org/10.1016/j.meegid.2013.12.005
  54. Cui A., Zhu Z., Hu Y., Deng X., Sun Z., Zhang Y., et al. Mumps epidemiology and mumps virus genotypes circulating in mainland China during 2013–2015. PLoS One. 2017; 12(1): e0169561. https://doi.org/10.1371/journal.pone.0169561
  55. Ma J., Li S., Wang P., Han F., Wang Q., Huo Y. Mumps virus genotype F small hydrophobic protein (SH) gene, complete cds. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=1834471515 (accessed January 14, 2021).
  56. Woo G.K.S., Chan S.C.H., Lo J.Y.C. Small hydrophobic protein gene sequence of Mumps virus detected in Mongolia in 2011. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=530330281 (accessed January 14, 2021).
  57. Wiman A., Brytting M. Mumps orthorubulavirus SH (SH) gene, complete cds. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=578003373 (accessed January 14, 2021).
  58. Gogate S.S., Vaidya S.R., Chowdhury D.T., Kumbhar N.S. Mumps virus genotypes circulating in Pune, India. Available at: https://www.ncbi.nlm.nih.gov/nuccore/JX442440.1 (accessed January 14, 2021).
  59. Hiebert J., Severini A. Mumps surveillance in Canada. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=1796906304 (accessed January 14, 2021).
  60. Bodewes R., van Rooijen K., Cremer J., Veldhuijzen I.K., van Binnendijk R. Optimizing molecular surveillance of mumps genotype G viruses. Infect. Genet. Evol. 2019; 69: 230–4. https://doi.org/10.1016/j.meegid.2019.02.005
  61. Dembinski J.L. Mumps virus genotype G strain MuVs/Fredrikstad. NOR/13.20[G] small hydrophobic protein (SH) gene, complete cds. Available at: https://www.ncbi.nlm.nih.gov/nuccore/MT339438.1 (accessed January 14, 2021).
  62. Tallo T. Mumps virus genotype G small hydrophobic protein (SH) gene, complete cds. Available at: https://www.ncbi.nlm.nih.gov/popset?DbFrom=nuccore&Cmd=Link&LinkName=nuccore_popset&IdsFromResult=2065478238 (accessed January 14, 2021)

补充文件

附件文件
动作
1. JATS XML

版权所有 © Problems of Virology, 2022

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».