The prospects for the use of drugs based on the phenomenon of RNA interference against HIV infection

封面

如何引用文章

全文:

详细

The human immunodeficiency virus (HIV) is currently one of the most pressing global health problems. Since its discovery in 1978, HIV has claimed the lives of more than 35 million people, and the number of people infected today reaches 37 million. In the absence of highly active antiretroviral therapy (HAART), HIV infection is characterized by a steady decrease in the number of CD4+ T-lymphocytes, but its manifestations can affect the central nervous, cardiovascular, digestive, endocrine and genitourinary systems. At the same time, complications induced by representatives of pathogenic and opportunistic microflora, which can lead to the development of bacterial, fungal and viral concomitant infections, are of particular danger. It should be borne in mind that an important problem is the emergence of viruses resistant to standard therapy, as well as the toxicity of the drugs themselves for the body. In the context of this review, of particular interest is the assessment of the prospects for the creation and clinical use of drugs based on small interfering RNAs aimed at suppressing the reproduction of HIV, taking into account the experience of similar studies conducted earlier. RNA interference is a cascade of regulatory reactions in eukaryotic cells, which results in the degradation of foreign messenger RNA. The development of drugs based on the mechanism of RNA interference will overcome the problem of viral resistance. Along with this, this technology makes it possible to quickly respond to outbreaks of new viral diseases.

作者简介

Evgenij Pashkov

I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution “I. Mechnikov Research Institute of Vaccines and Sera”

编辑信件的主要联系方式.
Email: pashckov.j@yandex.ru
ORCID iD: 0000-0002-5682-4581

Junior Researcher of Federal State Budgetary Scientific Institution “I. Mechnikov Research Institute of Vaccines and Sera”

俄罗斯联邦, Moscow; Moscow

Anastasia Pak

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: pashckov.j@yandex.ru
ORCID iD: 0000-0003-4295-7858
俄罗斯联邦, Moscow

Evgenij Pashkov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: pashckov.j@yandex.ru
ORCID iD: 0000-0002-4963-5053
俄罗斯联邦, Moscow

Anatoliy Bykov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: pashckov.j@yandex.ru
ORCID iD: 0000-0002-8099-6201
俄罗斯联邦, Moscow

Elena Budanova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: pashckov.j@yandex.ru
俄罗斯联邦, Moscow

Alexander Poddubikov

Federal State Budgetary Scientific Institution “I. Mechnikov Research Institute of Vaccines and Sera”

Email: pashckov.j@yandex.ru
ORCID iD: 0000-0001-8962-4765
俄罗斯联邦, Moscow

Oxana Svitich

I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution “I. Mechnikov Research Institute of Vaccines and Sera”

Email: pashckov.j@yandex.ru
ORCID iD: 0000-0003-1757-8389
俄罗斯联邦, Moscow; Moscow

Vitaly Zverev

I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution “I. Mechnikov Research Institute of Vaccines and Sera”

Email: pashckov.j@yandex.ru
ORCID iD: 0000-0002-0017-1892
俄罗斯联邦, Moscow; Moscow

参考

  1. WHO. Fact sheet. HIV. Available at: https://www.who.int/news-room/fact-sheets/detail/hiv-aids
  2. International Committee on Taxonomy of Viruses. Current ICTV Taxonomy Release. Taxonomy Browser. Available at: https://talk.ictvonline.org/taxonomy
  3. Nyamweya S., Hegedus A., Jaye A., Rowland-Jones S., Flanagan K.L., Macallan D.C. Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev. Med. Virol. 2013; 23(4): 221–40. https://doi.org/10.1002/rmv.1739
  4. Spudich S.S., Ances B.M. Neurologic complications of HIV infection. Top. Antivir. Med. 2012; 20(2): 41–7.
  5. Vachiat A., McCutcheon K., Tsabedze N., Zachariah D., Manga P. HIV and ischemic heart disease. J. Am. Coll. Cardiol. 2017; 69(1): 73–82. https://doi.org/10.1016/j.jacc.2016.09.979
  6. Kearns A., Gordon J., Burdo T.H., Qin X. HIV-1-associated atherosclerosis: unraveling the missing link. J. Am. Coll. Cardiol. 2017; 69(25): 3084–98. https://doi.org/10.1016/j.jacc.2017.05.012.
  7. Ances B.M., Anderson A.M., Letendre S.L. CROI 2021: Neurologic complications of HIV-1 infection or COVID-19. Top. Antivir. Med. 2021; 29(2): 334–43.
  8. Heyns C.F., Groeneveld A.E., Sigarroa N.B. Urologic complications of HIV and AIDS. Nat. Clin. Pract. Urol. 2009; 6(1): 32–43. https://doi.org/10.1038/ncpuro1273
  9. Sim J.H., Mukerji S.S., Russo S.C., Lo J. Gastrointestinal dysfunction and HIV comorbidities. Curr. HIV/AIDS Rep. 2021; 18(1): 57–62. https://doi.org/10.1007/s11904-020-00537-8
  10. Barbier F., Mer M., Szychowiak P., Miller R.F., Mariotte É., Galicier L., et al. Management of HIV-infected patients in the intensive care unit. Intensive Care Med. 2020; 46(2): 329–42. https://doi.org/10.1007/s00134-020-05945-3
  11. Limper A.H., Adenis A., Le T., Harrison T.S. Fungal infections in HIV/AIDS. Lancet Infect. Dis. 2017; 17(11): e334–43. https://doi.org/10.1016/S1473-3099(17)30303-1
  12. José R.J., Periselneris J.N., Brown J.S. Opportunistic bacterial, viral and fungal infections of the lung. Medicine (Abingdon). 2020; 48(6): 366–72. https://doi.org/10.1016/j.mpmed.2020.03.006
  13. Wielgos A.A., Pietrzak B. Human papilloma virus-related premalignant and malignant lesions of the cervix and anogenital tract in immunocompromised women. Ginekol. Pol. 2020; 91(1): 32–7. https://doi.org/10.5603/GP.2020.0008
  14. Cesarman E., Damania B., Krown S.E., Martin J., Bower M., Whitby D. Kaposi sarcoma. Nat. Rev. Dis. Primers. 2019; 5(1): 9. https://doi.org/10.1038/s41572-019-0060-9.
  15. Thandra K.C., Barsouk A., Saginala K., Padala S.A., Barsouk A., Rawla P. Epidemiology of non-Hodgkin’s lymphoma. Med. Sci. (Basel). 2021; 9(1): 5. https://doi.org/10.3390/medsci9010005
  16. Abram M.E., Ferris A.L., Shao W., Alvord W.G., Hughes S.H. Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication. J. Virol. 2010; 84(19): 9864–78. https://doi.org/10.1128/JVI.00915-10
  17. Margolis A.M., Heverling H., Pham P.A., Stolbach A. A review of the toxicity of HIV medications. J. Med. Toxicol. 2014; 10(1): 26–39. https://doi.org/10.1007/s13181-013-0325-8
  18. Clutter D.S., Jordan M.R., Bertagnolio S., Shafer R.W. HIV-1 drug resistance and resistance testing. Infect. Genet. Evol. 2016; 46: 292–307. https://doi.org/10.1016/j.meegid.2016.08.031
  19. Kachanov D.A., Atangulov G.I., Khamade Kh., Lishkevich I.A., Elshashtiri M.N.D., Ivanyan Zh.N., et al. Aspects of the prescribing antiretroviral drugs in the treatment of HIV-infected patients. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal. 2021; (2-3): 25–30. https://doi.org/10.23670/IRJ.2021.103.2.066 (in Russian)
  20. EPIVIR (lamivudine). Tablets and Oral Solution. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020564s031,020596s030lbl.pdf
  21. Johnson M.A., Verpooten G.A., Daniel M.J., Plumb R., Moss J., Van Caesbroeck D., et al. Single dose pharmacokinetics of lamivudine in subjects with impaired renal function and the effect of haemodialysis. Br. J. Clin. Pharmacol. 1998; 46(1): 21–7. https://doi.org/10.1046/j.1365-2125.1998.00044.x
  22. Manfredi R., Calza L. HIV infection and the pancreas: risk factors and potential management guidelines. Int. J. STD AIDS. 2008; 19(2): 99–105. https://doi.org/10.1258/ijsa.2007.007076
  23. Herlitz L.C., Mohan S., Stokes M.B., Radhakrishnan J., D’Agati V.D., Markowitz G.S. Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int. 2010; 78(11): 1171–7. https://doi.org/10.1038/ki.2010.318
  24. Abe K., Obara T., Kamio S., Kondo A., Imamura J., Goto T., et al. Renal function in Japanese HIV-1-positive patients who switch to tenofovir alafenamide fumarate after long-term tenofovir disoproxil fumarate: a single-center observational study. AIDS Res. Ther. 2021; 18(1): 94. https://doi.org/10.1186/s12981-021-00420-5
  25. Wessman M., Weis N., Katzenstein T.L., Lebech A.M., Thorsteinsson K., Hansen A.E., et al. The significance of HIV to bone mineral density. Ugeskr. Laeger. 2017; 179(36): V05170420. (in Danish)
  26. Ruane P.J., DeJesus E., Berger D., Markowitz M., Bredeek U.F., Callebaut C., et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of tenofovir alafenamide as 10-day monotherapy in HIV-1-positive adults. J. Acquir. Immune Defic. Syndr. 2013; 63(4): 449–55. https://doi.org/10.1097/QAI.0b013e3182965d45
  27. Bañó M., Morén C., Barroso S., Juárez D.L., Guitart-Mampel M., González-Casacuberta I., et al. Mitochondrial toxicogenomics for antiretroviral management: HIV post-exposure prophylaxis in uninfected patients. Front. Genet. 2020; 11: 497. https://doi.org/10.3389/fgene.2020.00497
  28. Kinloch-De Loës S., Hirschel B.J., Hoen B., Cooper D.A., Tindall B., Carr A., et al. A controlled trial of zidovudine in primary human immunodeficiency virus infection. N. Engl. J. Med. 1995; 333(7): 408–13. https://doi.org/10.1056/NEJM199508173330702
  29. Hachiya A., Kodama E.N., Schuckmann M.M., Kirby K.A., Michailidis E., Sakagami Y., et al. K70Q adds high-level tenofovir resistance to “Q151M complex” HIV reverse transcriptase through the enhanced discrimination mechanism. PLoS One. 2011; 6(1): e16242. https://doi.org/10.1371/journal.pone.0016242
  30. Sarafianos S.G., Das K., Clark A.D.Jr., Ding J., Boyer P.L., Hughes S.H., et al. Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids. Proc. Natl Acad. Sci. USA. 1999; 96(18): 10027–32. https://doi.org/10.1073/pnas.96.18.10027
  31. Marcelin A.G. Resistance to nucleoside reverse transcriptase inhibitors. In: Geretti A.M., ed. Antiretroviral Resistance in Clinical Practice. Chapter 1. London: Mediscript; 2006.
  32. Rai M.A., Pannek S., Fichtenbaum C.J. Emerging reverse transcriptase inhibitors for HIV-1 infection. Expert. Opin. Emerg. Drugs. 2018; 23(2): 149–57. https://doi.org/10.1080/14728214.2018.1474202
  33. Rihs T.A., Begley K., Smith D.E., Sarangapany J., Callaghan A., Kelly M., et al. Efavirenz and chronic neuropsychiatric symptoms: a cross-sectional case control study. HIV Med. 2006; 7(8): 544–8. https://doi.org/10.1111/j.1468-1293.2006.00419.x
  34. Mollan K.R., Smurzynski M., Eron J.J., Daar E.S., Campbell T.B., Sax P.E., et al. Association between efavirenz as initial therapy for HIV-1 infection and increased risk for suicidal ideation or attempted or completed suicide: an analysis of trial data. Ann. Intern. Med. 2014; 161(1): 1–10. https://doi.org/10.7326/M14-0293
  35. Leutscher P.D., Stecher C., Storgaard M., Larsen C.S. Discontinuation of efavirenz therapy in HIV patients due to neuropsychiatric adverse effects. Scand. J. Infect. Dis. 2013; 45(8): 645–51. https://doi.org/10.3109/00365548.2013.773067
  36. Cohen C., Wohl D., Arribas J.R., Henry K., Van Lunzen J., Bloch M., et al. Week 48 results from a randomized clinical trial of rilpivirine/emtricitabine/tenofovir disoproxil fumarate vs. efavirenz/emtricitabine/tenofovir disoproxil fumarate in treatment-naive HIV-1-infected adults. AIDS. 2014; 28(7): 989–97. https://doi.org/10.1097/QAD.0000000000000169
  37. Hsiou Y., Das K., Ding J., Clark A.D.Jr., Kleim J.P., Rösner M., et al. Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: inhibitor flexibility is a useful design feature for reducing drug resistance. J. Mol. Biol. 1998; 284(2): 313–23. https://doi.org/10.1006/jmbi.1998.2171
  38. Kertesz D.J., Brotherton-Pleiss C., Yang M., Wang Z., Lin X., Qiu Z., et al. Discovery of piperidin-4-yl-aminopyrimidines as HIV-1 reverse transcriptase inhibitors. N-benzyl derivatives with broad potency against resistant mutant viruses. Bioorg. Med. Chem. Lett. 2010; 20(14): 4215–8. https://doi.org/10.1016/j.bmcl.2010.05.040
  39. Betancor G., Álvarez M., Marcelli B., Andrés C., Martínez M.A., Menéndez-Arias L. Effects of HIV-1 reverse transcriptase connection subdomain mutations on polypurine tract removal and initiation of (+)-strand DNA synthesis. Nucleic. Acids. Res. 2015; 43(4): 2259–70. https://doi.org/10.1093/nar/gkv077
  40. Kotler D.P. HIV and antiretroviral therapy: lipid abnormalities and associated cardiovascular risk in HIV-infected patients. J. Acquir. Immune Defic. Syndr. 2008; 49(Suppl. 2): S79–85. https://doi.org/10.1097/QAI.0b013e318186519c
  41. Vyas A.K., Koster J.C., Tzekov A., Hruz P.W. Effects of the HIV protease inhibitor ritonavir on GLUT4 knock-out mice. J. Biol. Chem. 2010; 285(47): 36395–400. https://doi.org/10.1074/jbc.M110.176321
  42. Hardy W.D., Gulick R.M., Mayer H., Fätkenheuer G., Nelson M., Heera J., et al. Two-year safety and virologic efficacy of maraviroc in treatment-experienced patients with CCR5-tropic HIV-1 infection: 96-week combined analysis of MOTIVATE 1 and 2. J. Acquir. Immune Defic. Syndr. 2010; 55(5): 558–64. https://doi.org/10.1097/QAI.0b013e3181ee3d82
  43. Yuen M.F., Schiefke I., Yoon J.H., Ahn S.H., Heo J., Kim J.H., et al. RNA interference therapy with ARC-520 results in prolonged hepatitis B surface antigen response in patients with chronic hepatitis B infection. Hepatology. 2020; 72(1): 19–31. https://doi.org/10.1002/hep.31008.
  44. Janssen H.L., Reesink H.W., Lawitz E.J., Zeuzem S., RodriguezTorres M., Patel K., et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 2013; 368(18): 1685–94. https://doi.org/10.1056/nejmoa1209026
  45. Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev. Med. Virol. 2018; 28(4): e1976. https://doi.org/10.1002/rmv.1976
  46. Pashkov E.A., Fayzuloev E.B., Svitich O.A., Sergeev O.V., Zverev V.V. The potential of synthetic small interfering RNA-based antiviral drugs for influenza treatment. Voprosy virusologii. 2020; 65(4): 182–90. https://doi.org/10.36233/0507-4088-2020-65-4-182-190 (in Russian)
  47. Page K.A., Liegler T., Feinberg M.B. Use of a green fluorescent protein as a marker for human immunodeficiency virus type 1 infection. AIDS Res. Hum. Retroviruses. 1997 Sep 1;13(13):1077-81. https://doi.org/10.1089/aid.1997.13.1077.
  48. Novina C.D., Murray M.F., Dykxhoorn D.M., Beresford P.J., Riess J., Lee S.K., et al. siRNA-directed inhibition of HIV-1 infection. Nat. Med. 2002; 8(7): 681–6. https://doi.org/10.1038/nm725
  49. Coburn G.A., Cullen B.R. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J. Virol. 2002; 76(18): 9225–31. https://doi.org/10.1128/jvi.76.18.9225-9231.2002
  50. Hayafune M., Miyano-Kurosaki N., Park W.S., Moori Y., Takaku H. Silencing of HIV-1 gene expression by two types of siRNA expression systems. Antivir. Chem. Chemother. 2006; 17(5): 241–9. https://doi.org/10.1177/095632020601700501
  51. Kretova O.V., Fedoseeva D.M., Gorbacheva M.A., Gashnikova N.M., Gashnikova M.P., Melnikova N.V., et al. Six highly conserved targets of RNAi revealed in HIV-1-infected patients from Russia are also present in many HIV-1 strains worldwide. Mol. Ther. Nucleic. Acids. 2017; 8: 330–44. https://doi.org/10.1016/j.omtn.2017.07.010
  52. Aquaro S., Caliò R., Balzarini J., Bellocchi M.C., Garaci E., Perno C.F. Macrophages and HIV infection: therapeutical approaches toward this strategic virus reservoir. Antiviral. Res. 2002; 55(2): 209–25. https://doi.org/10.1016/s0166-3542(02)00052-9
  53. Trillo-Pazos G., Diamanturos A., Rislove L., Menza T., Chao W., Belem P., et al. Detection of HIV-1 DNA in microglia/macrophages, astrocytes and neurons isolated from brain tissue with HIV-1 encephalitis by laser capture microdissection. Brain Pathol. 2003; 13(2): 144–54. https://doi.org/10.1111/j.1750-3639.2003.tb00014.x
  54. Dave R.S., Pomerantz R.J. Antiviral effects of human immunodeficiency virus type 1-specific small interfering RNAs against targets conserved in select neurotropic viral strains. J. Virol. 2004; 78(24): 13687–96. https://doi.org/10.1128/JVI.78.24.13687-13696.2004
  55. Lesch M., Luckner M., Meyer M., Weege F., Gravenstein I., Raftery M., et al. RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathog. 2019; 15(3): e1007601. https://doi.org/10.1371/journal.ppat.1007601
  56. Brass A.L., Dykxhoorn D.M., Benita Y., Yan N., Engelman A., Xavier R.J., et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science. 2008; 319(5865): 921–6. https://doi.org/10.1126/science.1152725
  57. Rodriguez M., Lapierre J., Ojha C.R., Kaushik A., Batrakova E., Kashanchi F., et al. Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci. Rep. 2017; 7(1): 1862. https://doi.org/10.1038/s41598-017-01819-9
  58. Capranico G., Tinelli S., Austin C.A., Fisher M.L., Zunino F. Different patterns of gene expression of topoisomerase II isoforms in differentiated tissues during murine development. Biochim. Biophys. Acta. 1992; 1132(1): 43–8. https://doi.org/10.1016/0167-4781(92)90050-a
  59. Sunnam L.B.K., Kondapi A.K. Topoisomerase II β gene specific siRNA delivery by nanoparticles prepared with c-ter Apotransferrin and its effect on HIV-1 replication. Mol. Biotechnol. 2021; 63(8): 732–45. https://doi.org/10.1007/s12033-021-00334-7
  60. Wheeler L.A., Vrbanac V., Trifonova R., Brehm M.A., Gilboa-Geffen A., Tanno S., et al. Durable knockdown and protection from HIV transmission in humanized mice treated with gel-formulated CD4 aptamer-siRNA chimeras. Mol. Ther. 2013; 21(7): 1378–89. https://doi.org/10.1038/mt.2013.77

补充文件

附件文件
动作
1. JATS XML

版权所有 © Problems of Virology, 2022

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».