Анализ особенностей белка Tat вируса иммунодефицита человека 1 типа суб-субтипа А6 (Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodefciency virus-1)
- Авторы: Кузнецова А.И.1, Громов К.Б.1,2, Киреев Д.Е.2, Шлыкова А.В.2, Лопатухин А.Э.2, Казеннова Е.В.1, Лебедев А.В.1, Туманов А.С.1, Ким К.В.1, Бобкова М.Р.1
-
Учреждения:
- Институт вирусологии им. Д.И. Ивановского ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
- ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
- Выпуск: Том 66, № 6 (2021)
- Страницы: 452-464
- Раздел: ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ
- URL: https://journal-vniispk.ru/0507-4088/article/view/118222
- DOI: https://doi.org/10.36233/0507-4088-83
- ID: 118222
Цитировать
Аннотация
Введение. Белок Tat вируса иммунодефицита человека (ВИЧ) является главным фактором регуляции транскрипции генома ВИЧ и имеет ряд дополнительных внутриклеточных и внеклеточных активностей. Как и другим белкам ВИЧ, Tat свойственна изменчивость, при этом некоторые аминокислотные замены внутри белка Tat, включая субтип-специфичные, способны влиять на его функциональность. В РФ наиболее широко распространён ВИЧ 1 типа (ВИЧ-1) суб-субтипа А6. Исследования полиморфизма структурных областей генома А6 выявили многочисленные характерные особенности этого варианта, однако изучение области генома, кодирующей Tat, у ВИЧ-1 суб-субтипа А6 не проводилось.
Цели и задачи: Основной целью работы был анализ особенностей белка Tat у ВИЧ-1 суб-субтипа А6. Задачами исследования были выявление характеристических замен, сравнение полиморфизма белка Tat суб-субтипа А6 и наиболее близкого к нему суб-субтипа А1, а также определение статистически достоверных различий в функционально значимых доменах Tat суб-субтипа А6 и наиболее изученного субтипа В.
Материал и методы. Материалом для работы послужили нуклеотидные последовательности ВИЧ-1 суб-субтипов А6, А1, А2, А3, А4, субтипа В и референсная нуклеотидная последовательность, полученные из международной базы данных Los Alamos.
Результаты и обсуждение. Мутации Q54H и Q60H являются характеристическими заменами для А6. Продемонстрированы существенные достоверные различия в частоте естественных полиморфизмов белка Tat между суб-субтипами А6 и А1. В функционально значимом CPP-регионе выявлены мутации, достоверно различающиеся по частоте между суб-субтипом А6 и субтипом В ВИЧ-1 – R53K, Q54H, Q54P и R57G.
Заключение. Белок Tat варианта А6 ВИЧ-1 обладает особенностями, позволяющими достоверно отличить его от других генетических вариантов вируса. Выявленные в функционально значимом CPP-регионе мутации потенциально способны изменять активность данного белка. Полученные данные могут составить основу для разработки лекарственных и вакцинных препаратов.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
А. И. Кузнецова
Институт вирусологии им. Д.И. Ивановского ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Автор, ответственный за переписку.
Email: a-myznikova@list.ru
ORCID iD: 0000-0001-5299-3081
Кузнецова Анна Игоревна, канд. биол. наук, старший научный сотрудник лаборатории вирусов лейкозов
123098, Москва, Россия
РоссияК. Б. Громов
Институт вирусологии им. Д.И. Ивановского ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России; ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0002-9316-1975
123098, Москва, Россия
111123, Москва, Россия
РоссияД. Е. Киреев
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0002-7896-2379
111123, Москва, Россия
РоссияА. В. Шлыкова
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0002-1390-8021
111123, Москва, Россия
РоссияА. Э. Лопатухин
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)
Email: fake@neicon.ru
ORCID iD: 0000-0002-2826-699X
111123, Москва, Россия
РоссияЕ. В. Казеннова
Институт вирусологии им. Д.И. Ивановского ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-7912-4270
123098, Москва, Россия
РоссияА. В. Лебедев
Институт вирусологии им. Д.И. Ивановского ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0001-6787-9345
123098, Москва, Россия
РоссияА. С. Туманов
Институт вирусологии им. Д.И. Ивановского ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-6221-5678
123098, Москва, Россия
РоссияК. В. Ким
Институт вирусологии им. Д.И. Ивановского ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-4150-2280
123098, Москва, Россия
РоссияМ. Р. Бобкова
Институт вирусологии им. Д.И. Ивановского ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0001-5481-8957
123098, Москва, Россия
РоссияСписок литературы
- Campbell G.R., Loret E.P. What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology. 2009; 6: 50. https://doi.org/10.1186/1742-4690-6-50
- Jin H., Li D., Lin M.H., Li L., Harrich D. Tat-based therapies as an adjuvant for an HIV-1 functional cure. Viruses. 2020; 12(4): 415. https://doi.org/10.3390/v12040415
- Asamitsu K., Fujinaga K., Okamoto T. HIV tat/P-TEFb interaction: a potential target for novel anti-HIV therapies. Molecules. 2018; 23(4): 933. https://doi.org/10.3390/molecules23040933
- Лаповок И.А., Лопатухин А.Э., Киреев Д.Е., Казеннова Е.В., Лебедев А.В., Бобкова М.Р., и др. Молекулярно-эпидемиологический анализ вариантов ВИЧ-1, циркулировавших в Рос- сии в 1987–2015 гг. Терапевтический архив. 2017; 89(11): 44–9. https://doi.org/10.17116/terarkh2017891144-49
- Громов К.Б., Киреев Д.Е., Мурзакова А.В., Лопатухин А.Э., Казеннова Е.В., Бобкова М.Р. Анализ полиморфизма белка Nef вариантов ВИЧ-1 (Human immunodeficiency virus-1, Lentivirus, Orthoretrovirinae, Retroviridae), циркулирующих в странах бывшего СССР. Вопросы вирусологии. 2019; 64(6): 281–90. https://doi.org/10.36233/0507-4088-2019-64-6-281-290
- Rosen C.A. Tat and Rev: positive modulators of human immunodeficiency virus gene expression. Gene Expr. 1991; 1(2): 85–90.
- Clark E., Nava B., Caputi M. Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Oncotarget. 2017; 8(16): 27569–81. https://doi.org/10.18632/oncotarget.15174
- Ajasin D., Eugenin E.A. HIV-1 Tat: Role in bystander toxicity. Front. Cell. Infect. Microbiol. 2020; 10: 61. https://doi.org/10.3389/fcimb.2020.00061
- Spector C., Mele A.R., Wigdahl B., Nonnemacher M.R. Genetic variation and function of the HIV-1 Tat protein. Med. Microbiol. Immunol. 2019; 208(2): 131–69. https://doi.org/10.1007/s00430-019-00583-z
- Asamitsu K., Okamoto T. The Tat/P-TEFb protein-protein interaction determining transcriptional activation of HIV. Curr. Pharm. Des. 2017; 23(28): 4091–7. https://doi.org/10.2174/1381612823666170710164148
- Nekhai S., Jeang K.T. Transcriptional and post-transcriptional regulation of HIV-1 gene expression: role of cellular factors for Tat and Rev. Future Microbiol. 2006; 1(4): 417–26. https://doi.org/10.2217/17460913.1.4.417
- Vardabasso C., Manganaro L., Lusic M., Marcello A., Giacca M. The histone chaperone protein nucleosome assembly protein-1 (hNAP-1) binds HIV-1 Tat and promotes viral transcription. Retrovirology. 2008; 5: 8. https://doi.org/10.1186/1742-4690-5-8
- Kamori D., Ueno T. HIV-1 Tat and viral latency: What we can learn from naturally occurring sequence variations. Front. Microbiol. 2017; 8: 80. https://doi.org/10.3389/fmicb.2017.00080
- Rodríguez-Mora S., Mateos E., Moran M., Martín M.Á., López J.A., Calvo E., et al. Intracellular expression of Tat alters mitochondrial functions in T cells: a potential mechanism to understand mitochondrial damage during HIV-1 replication. Retrovirology. 2015; 12: 78. https://doi.org/10.1186/s12977-015-0203-3
- Darbinian N., Darbinyan A., Merabova N., Selzer M.E., Amini S. HIV-1 and HIV-1-Tat induce mitochondrial DNA damage in human neurons. HIV AIDS. 2020; 6(1): 176. https://doi.org/10.16966/2380-5536.176
- Kim J., Kim Y.S. Effect of HIV-1 Tat on the formation of the mitotic spindle by interaction with ribosomal protein S3. Sci. Rep. 2018; 8(1): 8680. https://doi.org/10.1038/s41598-018-27008-w
- Debaisieux S., Rayne F., Yezid H., Beaumelle B. The ins and outs of HIV-1 Tat. Traffic. 2012; 13(3): 355–63. https://doi.org/10.1111/j.1600-0854.2011.01286.x
- Ruiz A.P., Ajasin D.O., Ramasamy S., DesMarais V., Eugenin E.A., Prasad V.R. A naturally occurring polymorphism in the HIV-1 Tat basic domain inhibits uptake by bystander cells and leads to reduced neuroinflammation. Sci. Rep. 2019; 9(1): 3308. https://doi.org/10.1038/s41598-019-39531-5
- Wenzel E.D., Avdoshina V., Mocchetti I. HIV-associated neurodegeneration: exploitation of the neuronal cytoskeleton. Neurovirol. 2019; 25(3): 301–12. https://doi.org/10.1007/s13365-019-00737-y
- Simenauer A., Nozik-Grayck E., Cota-Gomez A. The DNA damage response and HIV-associated pulmonary arterial hypertension. Int. J. Mol. Sci. 2020; 21(9): 3305. https://doi.org/10.3390/ijms21093305
- Anand A.R., Rachel G., Parthasarathy D. HIV proteins and endothelial dysfunction: implications in cardiovascular disease. Front. Cardiovasc. Med. 2018; 5: 185. https://doi.org/10.3389/fcvm.2018.00185
- Brailoiu E., Deliu E., Sporici R.A., Benamar K., Brailoiu G.C. HIV- 1-Tat excites cardiac parasympathetic neurons of nucleus ambiguus and triggers prolonged bradycardia in conscious rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014; 306(11): R814–22. https://doi.org/10.1152/ajpregu.00529.2013
- Jiang Y., Chai L., Fasae M.B., Bai Y. The role of HIV Tat protein in HIV-related cardiovascular diseases. J. Transl. Med. 2018; 16(1):121. https://doi.org/10.1186/s12967-018-1500-0
- Isaguliants M., Bayurova E., Avdoshina D., Kondrashova A., Chiodi F., Palefsky J.M. Oncogenic effects of HIV-1 proteins, mechanisms behind. Cancers. 2021; 13(2): 305. https://doi.org/10.3390/cancers13020305
- Li L., Dahiya S., Kortagere S., Aiamkitsumrit B., Cunningham D., Pirrone V., et al. Impact of Tat genetic variation on HIV-1 disease. Adv. Virol. 2012; 2012: 123605. https://doi.org/10.1155/2012/123605
- López-Huertas M.R., Mateos E., del Cojo M.S., Gómez-Esquer F., Díaz-Gil G., Rodríguez-Mora S., et al. The presence of HIV-1 Tat protein second exon delays Fas protein-mediated apoptosis in CD4+ T Lymphocytes: a potential mechanism for persistent viral production. J. Biol. Chem. 2013; 288(11): 7626–44. https://doi.org/10.1074/jbc.M112.408294
- Mishra M., Vetrivel S., Siddappa N.B., Ranga U., Seth P. Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Ann. Neurol. 2008; 63(3): 366–76. https://doi.org/10.1002/ana.21292
- Rao V.R., Sas A.R., Eugenin E.A., Siddapa N.B., Bimonte-Nelson H., Berman J.W., et al. HIV-1 clade-specific differences in the induction of neuropathogenesis. J. Neurosci. 2008; 28(40): 10010–6. https://doi.org/10.1523/JNEUROSCI.2955-08.2008
- Rao V.R., Neogi U., Talboom J.S., Padilla L., Rahman M., Fritz- French C., et al. Clade C HIV-1 isolates circulating in Southern Africa exhibit a greater frequency of dicysteine motif-containing Tat variants than those in Southeast Asia and cause increased neurovirulence. Retrovirology. 2013; 10: 61. https://doi.org/10.1186/1742-4690-10-61
- Paul R.H., Joska J.A., Woods C., Seedat S., Engelbrecht S., Hoare J., et al. Impact of the HIV Tat C30C31S dicysteine substitution on neuropsychological function in patients with clade C disease. J. Neurovirol. 2014; 20(6): 627–35. https://doi.org/10.1007/s13365-014-0293-z
- Vivès E., Brodin P., Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 1997; 272(25): 16010–7. https://doi.org/10.1074/jbc.272.25.16010
- Ziegler A., Seelig J. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters. Biophys. J. 2004; 86(1 Pt. 1): 254–63. https://doi.org/10.1016/s0006-3495(04)74101-6
- Ziegler A., Nervi P., Dürrenberger M., Seelig J. The cationic cell-penetrating peptide CPPTAT derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochemistry. 2005; 44(1): 138–8. https://doi.org/10.1021/bi0491604
- de Almeida S.M., Rotta I., Vidal L.R.R., Dos Santos J.S., Nath A., Johnson K., et al. HIV-1C and HIV-1B Tat protein polymorphism in Southern Brazil. J. Neurovirol. 2021; 27(1): 126–36. https://doi.org/10.1007/s13365-020-00935-z
- Bobkov A., Kazennova E., Selimova L., Bobkova M., Khanina T., Ladnaya N., et al. A sudden epidemic of HIV type 1 among injecting drug users in the former Soviet Union: identification of subtype A, subtype B, and novel gagA/envB recombinants. AIDS Res. Hum. Retroviruses. 1998; 14(8): 669–76. https://doi.org/10.1089/aid.1998.14.669
- Lebedev A., Lebedeva N., Moskaleychik F., Pronin A., Kazennova E., Bobkova M. Human immunodeficiency virus-1 diversity in the Moscow Region, Russia: Phylodynamics of the most common subtypes. Front. Microbiol. 2019; 10: 320. https://doi.org/10.3389/fmicb.2019.00320
- Казеннова Е.В., Лаповок И.А., Лага В.Ю., Васильев А.В., Бобкова М.Р. Естественные полиморфизмы гена pol варианта ВИЧ-1 IDU-A. ВИЧ-инфекция и иммуносупрессии. 2012; 4(4):44–51.
- Васильев А.В., Казеннова Е.В., Бобкова М.Р. Предсказание фенотипа R5/X4 вариантов ВИЧ-1, циркулирующих в России, с использованием компьютерных методов. Вопросы вирусологии. 2009; 54(3): 17–20.
- Казеннова Е.В., Васильев А.В., Бобкова М.Р. Прогноз эффективности применения препарата Бевиримат для лечения ВИЧ-инфекции в России. Вопросы вирусологии. 2010; 55(3): 37–41.
- Lapovok I., Laga V., Kazennova E., Bobkova M. HIV type 1 integrase natural polymorphisms in viral variants circulating in FSU countries. Curr. HIV Res. 2017; 15(5): 318–26. https://doi.org/10.2174/1570162X15666170815162052
- Shafer R.W., Rhee S.Y., Pillay D., Miller V., Sandstrom P., Schapiro J.M., et al. HIV protease and reverse transcriptase mutations for drug resistance surveillance. AIDS. 2007; 21(2): 215–23. https://doi.org/10.1097/qad.0b013e328011e691
- Jin H., Sun Y., Li D., Lin M.H., Lor M., Rustanti L., et al. Strong in vivo inhibition of HIV-1 replication by Nullbasic, a Tat mutant. mBio. 2019; 10(4): e01769–19. https://doi.org/10.1128/mBio.01769-19
- Leoz M., Kukanja P., Luo Z., Huang F., Cary D.C., Peterlin B.M., et al. HEXIM1-Tat chimera inhibits HIV-1 replication. PLoS Pathog. 2018; 14(11): e1007402. https://doi.org/10.1371/journal.ppat.1007402
- Mediouni S., Chinthalapudi K., Ekka M.K., Usui I., Jablonski J.A., Clementz M.A., et al. Didehydro-cortistatin A inhibits HIV-1 by specifically binding to the unstructured basic region of Tat. mBio. 2019; 10(1): e02662–18. https://doi.org/10.1128/mBio.02662-18
- Wan Z., Chen X. Triptolide inhibits human immunodeficiency virus type 1 replication by promoting proteasomal degradation of Tat protein. Retrovirology. 2014; 11: 88. https://doi.org/10.1186/s12977-014-0088-6
- Sgadari C., Monini P., Tripiciano A., Picconi O., Casabianca A., Orlandi C., et al. Continued decay of HIV proviral DNA upon vaccination with HIV-1 Tat of subjects on long-term ART: An 8-year follow-up study. Front. Immunol. 2019; 10: 233. https://doi.org/10.3389/fimmu.2019.00233
- Loret E.P., Darque A., Jouve E., Loret E.A., Nicolino-Brunet C., Morange S., et al. Intradermal injection of a Tat Oyi-based therapeutic HIV vaccine reduces of 1.5 log copies/mL the HIV RNA rebound median and no HIV DNA rebound following cart interruption in a phase I/II randomized controlled clinical trial. Retrovirology. 2016; 13: 21. https://doi.org/10.1186/s12977-016-0251-3
Дополнительные файлы
