Устойчивость к противовирусным препаратам у вирусов человека из подсемейства Betaherpesvirinae

Обложка
  • Авторы: Демин М.В.1, Тихомиров Д.С.1, Туполева Т.А.1, Филатов Ф.П.2,3
  • Учреждения:
    1. ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России
    2. ФГБНУ «Научно-исследовательский институт вакцин и сывороток имени И.И. Мечникова» Минобрнауки России
    3. ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
  • Выпуск: Том 67, № 5 (2022)
  • Страницы: 385-394
  • Раздел: ОБЗОРЫ
  • URL: https://journal-vniispk.ru/0507-4088/article/view/118233
  • DOI: https://doi.org/10.36233/0507-4088-136
  • ID: 118233

Цитировать

Полный текст

Аннотация

В обзоре представлена информация о механизмах возникновения устойчивости к противовирусным препаратам у вирусов человека из подсемейства Betaherpesvirinae. Даны сведения о принципах работы противовирусных препаратов и их характеристика. Описана частота появления вирусной устойчивости у различных групп пациентов и показаны сведения о возможных последствиях возникновения устойчивости к противовирусным препаратам. Дана информация о генах вируса, в которых происходят мутации, приводящие к вирусной устойчивости, и список таких мутаций, описанных на данный момент. Обсуждается значение исследования мутаций, приводящих к устойчивости вируса к противовирусным препаратам, для медицинской практики.

Об авторах

Михаил Валерьевич Демин

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Автор, ответственный за переписку.
Email: memindisha@gmail.com
ORCID iD: 0000-0002-7579-3442

биолог

Россия, 125167, г. Москва

Дмитрий Сергеевич Тихомиров

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Email: tihomirovgnc@bk.ru
ORCID iD: 0000-0002-2553-6579

КБН, заведующий лабораторией вирусологии

Россия, 125167, г. Москва

Татьяна Алексеевна Туполева

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Email: ttupoleva@mail.ru
ORCID iD: 0000-0003-4668-9379

ДМН, заведующий отделом вирусологии

Россия, 125167, г. Москва

Феликс Петрович Филатов

ФГБНУ «Научно-исследовательский институт вакцин и сывороток имени И.И. Мечникова» Минобрнауки России; ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Email: ffelix001@gmail.com
ORCID iD: 0000-0002-2385-9251

ДБН

Россия, 105064, г. Москва; 123098, г. Москва

Список литературы

  1. Umene K. Herpesviruses. Fukuoka Igaku Zasshi. 2001; 92(11): 361–4. (in Japanese)
  2. Piret J., Boivin G. Antiviral drug resistance in herpesviruses other than cytomegalovirus. Rev. Med. Virol. 2014; 24(3):186–218. https://doi.org/10.1002/rmv.1787
  3. Ramanan P., Razonable R.R. Cytomegalovirus infections in solid organ transplantation: A review. Infect. Chemother. 2013; 45(3): 260–71. https://doi.org/10.3947/ic.2013.45.3.260
  4. Панкратова О.С., Чухловин А.Б., Зубаровская Л.С., Афанасьев Б.В. Частота выявления вирусов группы герпеса и риск типичных осложнений при аллогенной трансплантации гемопоэтических стволовых клеток. Ученые записки СПбГМУ им. акад. И.П. Павлова. 2010; 17(1): 56–60.
  5. Kotton C.N. Management of cytomegalovirus infection in solid organ transplantation. Nat. Rev. Nephrol. 2010; 6(12): 711–21. https://doi.org/10.1038/nrneph.2010.141
  6. Takenaka K., Nishida T., Asano-Mori Y., Oshima K., Ohashi K., Mori T., et al. Cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation is associated with a reduced risk of relapse in patients with acute myeloid leukemia who survived to day 100 after transplantation: The Japan society for hematopoietic C. Biol. Blood Marrow Transplant. 2015; 21(11): 2008–16. https://doi.org/10.1016/j.bbmt.2015.07.019
  7. Rossi C., Delforge M.L., Jacobs F., Wissing M., Pradier O., Remmelink M., et al. Fatal primary infection due to human herpesvirus 6 variant A in a renal transplant recipient. Transplantation. 2001; 71(2): 288–92. https://doi.org/10.1097/00007890-200101270-00021
  8. Kidd M., Clark D., Sabin C., Andrew D., Hassan-Walker A., Sweny P., et al. Association of human herpesvirus 7 and cytomegalovirus co-infection with cytomegalovirus disease and increased rejection. Transplantation. 2000; 69(11): 2400–4. https://doi.org/10.1097/00007890-200006150-00032
  9. Britt W. Manifestations of human cytomegalovirus infection: Proposed mechanisms of acute and chronic disease. Curr. Top. Microbiol. Immunol. 2008; 325: 417–70. https://doi.org/10.1007/978-3-540-77349-8_23
  10. Cameron C.E., Raney K.D., Götte M. Viral Genome Replication. Boston: Springer; 2009.
  11. Chen S.J., Wang S.C., Chen Y.C. Antiviral agents as therapeutic strategies against cytomegalovirus infections. Viruses. 2019; 12(1): 21. https://doi.org/10.3390/v12010021
  12. Орлова С.В., Стома И.О., Шмелева Н.П., Сивец Н.В. Современное состояние проблемы герпесвирусных инфекций 6-го и 7-го типов с разными клиническими формами, возможности лечения. Инфекционные болезни: новости, мнения, обучение. 2021; 10(2): 78–86. https://doi.org/10.33029/2305-3496-2021-10-1-78-86
  13. Ward K.N., Hill J.A., Hubacek P., De La Camara R., Crocchiolo R., Einsele H., et al. Guidelines from the 2017 European Conference on Infections in Leukaemia for management of HHV-6 infection in patients with hematologic malignancies and after hematopoietic stem cell transplantation. Haematologica. 2019; 104(11): 2155–63. https://doi.org/10.3324/haematol.2019.223073
  14. Krishna B.A., Wills M.R., Sinclair J.H. Advances in the treatment of cytomegalovirus. Br. Med. Bull. 2019; 131(1): 5–17. https://doi.org/10.1093/bmb/ldz031
  15. Manichanh C., Olivier-Aubron C., Lagarde J.P., Aubin J.T., Bossi P., Gautheret-Dejean A., et al. Selection of the same mutation in the U69 protein kinase gene of human herpesvirus-6 after prolonged exposure to ganciclovir in vitro and in vivo. J. Gen. Virol. 2001; 82(Pt. 11): 2767–76. https://doi.org/10.1099/0022-1317-82-11-2767
  16. Ward K.N., Clark D.A. Roseoloviruses: human herpesviruses 6A, 6B and 7. In: Principles and Practice of Clinical Virology. Chichester: Wiley-Blackwell; 2009: 223–44.
  17. Goldner T., Hewlett G., Ettischer N., Ruebsamen-Schaeff H., Zimmermann H., Lischka P. The novel anticytomegalovirus compound AIC246 (letermovir) inhibits human cytomegalovirus replication through a specific antiviral mechanism that involves the viral terminase. J. Virol. 2011; 85(20): 10884–93. https://doi.org/10.1128/jvi.05265-11
  18. Neuber S., Wagner K., Goldner T., Lischka P., Steinbrueck L., Messerle M., et al. Mutual interplay between the human cytomegalovirus terminase subunits pUL51, pUL56, and pUL89 promotes terminase complex formation. J. Virol. 2017; 91(12): e02384-16. https://doi.org/10.1128/jvi.02384-16
  19. Piret J., Boivin G. Clinical development of letermovir and maribavir: Overview of human cytomegalovirus drug resistance. Antiviral. Res. 2019; 163: 91–105. https://doi.org/10.1016/j.antiviral.2019.01.011
  20. Lin A., Maloy M., Su Y., Bhatt V., DeRespiris L., Griffin M., et al. Letermovir for primary and secondary cytomegalovirus prevention in allogeneic hematopoietic cell transplant recipients: Real-world experience. Transpl. Infect. Dis. 2019; 21(6): 1–6. https://doi.org/10.1111/tid.13187
  21. Avery R.K., Alain S., Alexander B.D., Blumberg E.A., Chemaly R.F., Cordonnier C., et al. Maribavir for refractory cytomegalovirus infections with or without resistance post-transplant: results from a phase 3 randomized clinical trial. Clin. Infect. Dis. 2022; 75(4): 690–701. https://doi.org/10.1093/cid/ciab988
  22. Williams S.L., Hartline C.B., Kushner N.L., Harden E.A., Bidanset D.J., Drach J.C., et al. In vitro activities of benzimidazole D- and L-ribonucleosides against herpesviruses. Antimicrob. Agents Chemother. 2003; 47(7): 2186–92. https://doi.org/10.1128/aac.47.7.2186-2192.2003
  23. Shannon-Lowe C.D., Emery V.C. The effects of maribavir on the autophosphorylation of ganciclovir resistant mutants of the cytomegalovirus {UL}97 protein. Herpesviridae. 2010; 1(1): 4. https://doi.org/10.1186/2042-4280-1-4
  24. Sharma M., Bender B.J., Kamil J.P., Lye M.F., Pesola J.M., Reim N.I., et al. Human cytomegalovirus UL97 phosphorylates the viral nuclear egress complex. J. Virol. 2015; 89(1): 523–34. https://doi.org/10.1128/jvi.02426-14
  25. Chou S., Marousek G.I., Van Wechel L.C., Li S., Weinberg A. Growth and drug resistance phenotypes resulting from cytomegalovirus DNA polymerase region III mutations observed in clinical specimens. Antimicrob. Agents Chemother. 2007; 51(11): 4160–2. https://doi.org/10.1128/aac.00736-07
  26. O’Brien M.S., Markovich K.C., Selleseth D., DeVita A.V., Sethna P., Gentry B.G. In vitro evaluation of current and novel antivirals in combination against human cytomegalovirus. Antiviral. Res. 2018; 158: 255–63. https://doi.org/10.1016/j.antiviral.2018.08.015
  27. Chou S.W. Cytomegalovirus drug resistance and clinical implications. Transpl. Infect. Dis. 2001; 3(Suppl. 2): 20–4. https://doi.org/10.1034/j.1399-3062.2001.00004.x
  28. Jabs D.A., Enger C., Dunn J.P., Forman M., Hubbard L. Cytomegalovirus retinitis and viral resistance: 3. Culture results. Am. J. Ophthalmol. 1998; 126(4): 543–9. https://doi.org/10.1016/s0002-9394(98)00134-2
  29. Yu U., Wang X., Zhang X., Wang C., Yang C., Zhou X., et al. Cytomegalovirus infection and the implications of drug-resistant mutations in pediatric allogeneic hematopoietic stem cell transplant recipients: a retrospective study from a tertiary hospital in China. Infect. Dis. Ther. 2021; 10(3): 1309–22. https://doi.org/10.1007/s40121-021-00452-4
  30. Chou S. Approach to drug-resistant cytomegalovirus in transplant recipients. Curr. Opin. Infect. Dis. 2015; 28(4): 293–9. https://doi.org/10.1097/qco.0000000000000170
  31. Eckle T., Lang P., Prix L., Jahn G., Klingebiel T., Handgretinger R., et al. Rapid development of ganciclovir-resistant cytomegalovirus infection in children after allogeneic stem cell transplantation in the early phase of immune cell recovery. Bone Marrow Transplant. 2002; 30(7): 433–9. https://doi.org/10.1038/sj.bmt.1703666
  32. Wolf D.G., Yaniv I., Honigman A., Kassis I., Schonfeld T., Ashkenazi S. Early emergence of ganciclovir-resistant human cytomegalovirus strains in children with primary combined immunodeficiency. J. Infect. Dis. 1998; 178(2): 535–8. https://doi.org/10.1086/517468
  33. Littler E., Stuart A., Chee M. Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Nature. 1992; 358(6382): 160–2. https://doi.org/10.1038/358160a0
  34. Kleiboeker S., Nutt J., Schindel B., Dannehl J., Hester J. Cytomegalovirus antiviral resistance: Characterization of results from clinical specimens. Transpl. Infect. Dis. 2014; 16(4): 561–7. https://doi.org/10.1111/tid.12241
  35. Chou S. Advances in the genotypic diagnosis of cytomegalovirus antiviral drug resistance. Antiviral. Res. 2020; 176: 104711. https://doi.org/10.1016/j.antiviral.2020.104711
  36. Campos A.B., Ribeiro J., Pinho Vaz C., Campilho F., Branca R., Campos A., et al. Genotypic resistance of cytomegalovirus to antivirals in hematopoietic stem cell transplant recipients from Portugal: A retrospective study. Antiviral. Res. 2017; 138: 86–92. https://doi.org/10.1016/j.antiviral.2016.10.016
  37. Chen H., Beardsley G.P., Coen D.M. Mechanism of ganciclovir-induced chain termination revealed by resistant viral polymerase mutants with reduced exonuclease activity. Proc. Natl Acad. Sci. USA. 2014; 111(49): 17462–7. https://doi.org/10.1073/pnas.1405981111
  38. Chou S., Marousek G.I. Accelerated evolution of maribavir resistance in a cytomegalovirus exonuclease domain II mutant. J. Virol. 2008; 82(1): 246–53. https://doi.org/10.1128/jvi.01787-07
  39. Houldcroft C.J., Bryant J.M., Depledge D.P., Margetts B.K., Simmonds J., Nicolaou S., et al. Detection of low frequency multi-drug resistance and novel putative maribavir resistance in immunocompromised pediatric patients with cytomegalovirus. Front. Microbiol. 2016; 7: 1317. https://doi.org/10.3389/fmicb.2016.01317
  40. Chou S., Satterwhite L.E., Ercolani R.J. New locus of drug resistance in the human cytomegalovirus UL56 gene revealed by in vitro exposure to letermovir and ganciclovir. Antimicrob. Agents Chemother. 2018; 62(9): e00922-18. https://doi.org/10.1128/aac.00922-18
  41. Agut H., Collandre H., Aubin J.T., Guétard D., Favier V., Ingrand D., et al. In vitro sensitivity of human herpesvirus-6 to antiviral drugs. Res. Virol. 1989; 140(3): 219–28. https://doi.org/10.1016/s0923-2516(89)80099-8
  42. Manichanh C., Grenot P., Gautheret-Dejean A., Debré P., Huraux J.M., Agut H. Susceptibility of human herpesvirus 6 to antiviral compounds by flow cytometry analysis. Cytometry. 2000; 40(2): 135–40. https://doi.org/10.1002/(sici)1097-0320(20000601)40:2%3C135::aid-cyto7%3E3.0.co;2-h
  43. De Clercq E., Naesens L., De Bolle L., Schols D., Zhang Y., Neyts J. Antiviral agents active against human. Rev. Med. Virol. 2001; 11(6): 381–95. https://doi.org/10.1002/rmv.336
  44. Kotton C.N., Kumar D., Caliendo A.M., Huprikar S., Chou S., Danziger-Isakov L., et al. The third international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation. 2018; 102(6): 900–31. https://doi.org/10.1097/tp.0000000000002191
  45. Sahoo M.K., Lefterova M.I., Yamamoto F., Waggoner J.J., Chou S., Holmes S.P., et al. Detection of cytomegalovirus drug resistance mutations by next-Generation sequencing. J. Clin. Microbiol. 2013; 51(11): 3700–10. https://doi.org/10.1128/jcm.01605-13
  46. Andrei G., Van Loon E., Lerut E., Victoor J., Meijers B., Bammens B., et al. Persistent primary cytomegalovirus infection in a kidney transplant recipient: Multi-drug resistant and compartmentalized infection leading to graft loss. Antiviral. Res. 2019; 168: 203–9. https://doi.org/10.1016/j.antiviral.2019.06.004
  47. De Bolle L., Naesens L., De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin. Microbiol. Rev. 2005; 18(1): 217–45. https://doi.org/10.1128/cmr.18.1.217-245.2005
  48. Humar A., Malkan G., Moussa G., Greig P., Levy G., Mazzulli T. Human herpesvirus-6 is associated with cytomegalovirus reactivation in liver transplant recipients. J. Infect. Dis. 2000; 181(4): 1450–3. https://doi.org/10.1086/315391
  49. Isegawa Y., Hara J., Amo K., Osugi Y., Takemoto M., Yamanishi K., et al. Human herpesvirus 6 ganciclovir-resistant strain with amino acid substitutions associated with the death of an allogeneic stem cell transplant recipient. J. Clin. Virol. 2009; 44(1): 15–9. https://doi.org/10.1016/j.jcv.2008.09.002
  50. Baldwin K. Ganciclovir-resistant Human herpesvirus-6 encephalitis in a liver transplant patient: A case report. J. Neurovirol. 2011; 17(2): 193–5. https://doi.org/10.1007/s13365-011-0019-4
  51. Bounaadja L., Piret J., Goyette N., Boivin G. Analysis of HHV-6 mutations in solid organ transplant recipients at the onset of cytomegalovirus disease and following treatment with intravenous ganciclovir or oral valganciclovir. J. Clin. Virol. 2013; 58(1): 279–82. https://doi.org/10.1016/j.jcv.2013.06.024
  52. Safronetz D., Petric M., Tellier R., Parvez B., Tipples G.A. Mapping ganciclovir resistance in the human herpesvirus-6 U69 protein kinase. J. Med. Virol. 2003; 71(3): 434–9. https://doi.org/10.1002/jmv.10510

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок. Принципы действия противовирусных препаратов: MBV – марибавир, GCV – ганцикловир, CDV – цидофовир, FOS – фоскарнет, LMV – летермовир.

Скачать (227KB)

© Демин М.В., Тихомиров Д.С., Туполева Т.А., Филатов Ф.П., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».