Variability of genes encoding nonstructural proteins of rotavirus А (Reoviridae: Rotavirus: Rotavirus A) genotype G9P[8] during the period of dominance in the territory of Nizhny Novgorod (central part of Russia) (2011–2020)
- Authors: Velikzhanina E.I.1, Sashina T.A.1, Morozova O.V.1, Epifanova N.V.1, Novikova N.A.1
-
Affiliations:
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
- Issue: Vol 67, No 6 (2022)
- Pages: 475-486
- Section: ORIGINAL RESEARCH
- URL: https://journal-vniispk.ru/0507-4088/article/view/125754
- DOI: https://doi.org/10.36233/0507-4088-143
- ID: 125754
Cite item
Abstract
Introduction. In Russia, rotavirus A is the main cause of severe viral gastroenteritis in young children. The molecular features that allow a rotavirus of a particular genotype to gain an evolutionary advantage remain unclear, therefore, the study of the genetic diversity of rotaviruses based on genes encoding nonstructural proteins (NSPs) responsible for the reproduction of the virus in the cell is an urgent task.
Objective. To study the genetic diversity of rotaviruses of genotype G9P[8], which dominated Nizhny Novgorod in 2011–2020, based on genes encoding nonstructural proteins.
Materials and methods. Rotavirus-positive samples were subjected to PCR-genotyping and sequencing of NSP1 – NSP5 genes. Phylogenetic analysis was carried out in the MEGA X program.
Results. In the period 2011–2020, G9P[8] rotaviruses with four variants of the NSP2 gene were co-circulating in Nizhny Novgorod. New alleles were noted in 2012 (N1-a-III), 2016 (N1-a-IV) and in 2019 (N1-a-II). The appearance of new variants of other genes occurred in 2014 (E1-3, NSP4), 2018 (T1-a3-III, NSP3) and in 2019 (A1-b-II, NSP1). NSP2 gene had the most variable amino acid sequence (16 substitutions), 2 to 7 substitutions were observed in NSP1, NSP3 and NSP4, NSP5 was conservative.
Discussion. The results obtained are consistent with the literature data and indicate the participation of NSP genes in maintaining the heterogeneity of the rotavirus population.
Conclusion. Until 2018, the genetic diversity of rotaviruses in Nizhny Novgorod was determined by the circulation of strains carrying several alleles of the NSP2 gene and conservative genes NSP1, NSP3–NSP5. By the end of the study period, new variants of the genotype G9P[8] were formed in the population, carrying previously unknown combinations of alleles of nonstructural genes.
Full Text
##article.viewOnOriginalSite##About the authors
Elena I. Velikzhanina
«Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
Email: www.e_velikzhanina@mail.ru
ORCID iD: 0000-0003-4069-1427
Junior Researcher, laboratory of molecular epidemiology of viral infections
Russian Federation, 603950, Nizhny NovgorodTatiana A. Sashina
«Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
Email: tatyana.sashina@gmail.com
ORCID iD: 0000-0003-3203-7863
PhD, Senior Researcher, laboratory of molecular epidemiology of viral infections
Russian Federation, 603950, Nizhny NovgorodOlga V. Morozova
«Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
Email: Olga.morozova.bsc@gmail.com
ORCID iD: 0000-0002-8058-8187
PhD , Research assistant, laboratory of molecular epidemiology of viral infections
Russian Federation, 603950, Nizhny NovgorodNatalia V. Epifanova
«Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
Email: epifanovanv@mail.ru
ORCID iD: 0000-0001-7679-8029
PhD, Leading Researcher, laboratory of molecular epidemiology of viral infections
Russian Federation, 603950, Nizhny NovgorodNadezhda A. Novikova
«Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
Author for correspondence.
Email: novikova_na@mail.ru
ORCID iD: 0000-0002-3710-6648
Professor, Head of the laboratory of molecular epidemiology of viral infections
Russian Federation, 603950, Nizhny NovgorodReferences
- Priority areas of scientific research undertaken in order to create vaccines against diarrheal diseases. WHO Bulletin. 2019; (6): 21–40.(in Russian)
- Briko N.I., Bitieva E.A., Gorelov A.V., Gorelova E.A., Kudryavtsev V.V., Mindlina A.Ya. Epidemiology, Clinic, Treatmentand Immunoprophylaxis of Rotavirus Infection [Epidemiologiya, klinika, lechenie i immunoprofilaktika rotavirusnoy infektsii].Moscow: GEOTAR-Media; 2015. (in Russian)
- Estes M.K., Kapikian A.Z. Rotaviruses. In: Fields B.N., Knipe D.M., Howley P.M., eds. Fields Virology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007: 1917–73.
- Rixon F., Taylor P., Desselberger U. Rotavirus RVA segments sized by electron microscopy. J. Gen. Virol. 1984; 56(1): 233–9. https://doi.org/10.1099/0022-1317-65-1-233
- Matthijnssens J., Ciarlet M., Rahman M., Attoui H., Bányai K., Estes M.K., et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. J. Arch. Virol. 2008; 153(8): 1621–9. https://doi.org/10.1007/s00705-008-0155-1
- Estes M.K., Cohen J. Rotavirus gene structure and function. Microbiol. Rev. 1989; 53(4): 410–49. https://doi.org/10.1128/mr.53.4.410-449.1989
- RCWG. Rotavirus classification working group; 2018. Available at: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg
- Sashina T.A., Morozova O.V., Epifanova N.V., Novikova N.A. Predominance of new G9P[8] rotaviruses closely related to Turkish strains in Nizhny Novgorod (Russia). Arch. Virol. 2017; 162(8): 2387–92. https://doi.org/10.1007/s00705-017-3364-7
- Matthijnssens J., Heylen E., Zeller M., Rahman M., Lemey P., Van Ranst M. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. J. Mol. Biol. Evol. 2010; 27(10): 2431–6. https://doi.org/10.1093/ molbev/msq137
- Santos N., Hoshino Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. J. Rev. Med. Virol. 2005; 15(1): 29–56. https://doi.org/10.1002/rmv.448
- Kiseleva V., Faizuloev E., Meskina E., Marova A., Oksanich A., Samartseva T., et al. Molecular-genetic characterization of human rotavirus a strains circulating in Moscow, Russia (2009–2014). Virol Sin. 2018; 33(4): 304–13. https://doi.org/10.1007/s12250-018-0043-0
- Morozova O.V., Sashina T.A., Epifanova N.V., Novikova N.A.Differences in the amino acid composition of the antigen epitopes of the VP7 protein of Russian rotaviruses with the G9 genotype and the vaccine strains Rotateq, Rotavac, and Rotarix. Infektsiya i immunitet. 2019; 9(1): 57–66. https://doi.org/10.15789/2220-7619-2019-1-57-66 (in Russian)
- Sashina T.A., Morozova O.V., Epifanova N.V., Novikova N.A. Genotype constellations of the rotavirus A strains circulating in Nizhny Novgorod, Russia, 2017–2018. Infect. Genet. Evol. 2020; 85:104578. https://doi.org/10.1016/j.meegid.2020.104578
- Veselova O.A., Podkolzin A.T., Petukhov D.N., Kuleshov K.V., Shipulin G.A. Rotavirus group A surveillance and genotype distribution in Russian Federation in seasons 2012–2013. Int. J. Clin. Med. 2014; 5(7). 407–13. https://doi.org/10.4236/ijcm.2014.57055
- Zhirakovskaya E.V., Aksanova R.Kh., Gorbunova M.G., Tikunov A.Yu., Kuril’shchikov A.M., Sokolov S.N., et al. Genetic diversity of group a rotavirus isolates found in western Siberia in 2007–2011. Molekulyarnaya genetika, mikrobiologiya i virusologiya. 2012; 27(4): 174–83.(in Russian)
- Epifanova N.V., Morozova O.V., Sashina T.A., Novikova N.V.Characteristics of rotavirus with G9-genotype identified in Nizhny Novgorod during years 2011–12. Meditsinskiy alfavit. 2013; 4(24): 20–6. (in Russian)
- Sashina T.A., Morozova O.V., Epifanova N.V., Kashnikov A.Yu., Leonov A.V., Novikova N.A. Molecular monitoring of the rotavirus (Reoviridae: Sedoreovirinae: Rotavirus: Rotavirus A) strains circulating in Nizhny Novgorod (2012-2020): detection of the strains with the new genetic features. Voprosy virusologii. 2021; 66(2): 140–51. https://doi.org/10.36233/0507-4088-46 (in Russian)
- Both G.W., Bellamy A.R., Mitchell D.B. Rotavirus protein structure and function. Curr. Top. Microbiol. Immunol. 1994; 185: 67–105. https://doi.org/10.1007/978-3-642-78256-5_4
- Taraporewala Z.F., Patton J.T. Identification and characterization of the helix-destabilizing activity ofrotavirus nonstructural protein NSP2. J. Virol. 2001; 75(10): 4519–27. https://doi.org/10.1128/JVI.75.10.4519-4527.2001
- Vende Р., Piron М., Castagne N., Poncet D. Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. J. Virol. 2000; 74(15): 7064–71. https://doi.org/10.1128/jvi.74.15.7064-7071.2000
- Mirazimi A., Nilsson M., Svensson L. The molecular chaperone calnexin interacts with the NSP4 enterotoxin of rotavirus in vivo and in vitro. J. Virol. 1998; 72(11): 8705–9. https://doi.org/10.1128/JVI.72.11.8705-8709.1998
- Krishna Mohan K.V., Arteya C.D. Nucleotide sequence analysis of rotavirus gene 11 from two tissue culture-adapted ATCC strains, RRV and Wa. J. Virus Genes. 2001; 23(3): 321–9. https://doi.org/10.1023/a:1012577407824
- Torres-Vega M.A., Gonzalez R.A., Duarte M., Poncet D., López S., Arias C.F. The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. J. Gen. Virol. 2000; 81(Pt. 3): 821–30. https://doi.org/10.1099/0022-1317-81-3-821
- Novikova N.A., Sashina T.A., Epifanova N.V., Kashnikov A.U., Morozova O.V. Long-term monitoring of G1P[8] Rotaviruses circulating without vaccine pressure in Nizhny Novgorod, Russia, 1984–2019. Arch. Virol. 2020; 165(4): 865–75. https://doi.org/10.1007/s00705-020-04553-2
- Gentsch J.R., Glass R.I., Woods P., Gouvea V., Gorziglia M., Flores J., et al. Identification of group A rotavirus gene 4 types by polymerase chain reaction. J. Clin. Microbiol. 1992; 30(6): 1365–73. https://doi.org/10.1128/jcm.30.6.1365-1373.1992
- Gouvea V., Glass R.I., Woods P., Taniguchi K., Clark H.F., Forrester B., et al. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J. Clin. Microbiol. 1990; 28(2): 276–82. https://doi.org/10.1128/jcm.28.2.276-282.1990
- Iturriza-Gуmara M., Isherwood B., Desselberger U., Gray J. Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J. Virol. 2001; 75(8): 3696–705. https://doi.org/10.1128/jvi.75.8.3696-3705.2001
- Iturriza-Gуmara M., Kang G., Gray J. Rotavirus genotyping: keeping up with an evolving population of human rotaviruses. J. Clin. Virol. 2004; 31(4): 259–65. https://doi.org/10.1016/j.jcv.2004.04.009
- Maunula L., von Bonsdorff C.H. Short sequences define genetic lineages: phylogenetic analysis of group A rotaviruses based on partial sequences of genome segments 4 and 9. J. Gen. Virol. 1998; 79(Pt. 2): 321–32. https://doi.org/10.1099/0022-1317-79-2-321
- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018; 35(6): 1547–9. https://doi.org/10.1093/molbev/msy096
- Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA 10.0.5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. J. Mol. Biol. Evol. 2011; 28(10): 2731–9. https://doi.org/10.1093/molbev/msr121
- Mukherjee A., Dutta D., Ghosh S., Bagchi P., Chattopadhyay S., Nagashima S., et al. Full genomic analysis of a human group A rotavirus G9P[6] strain from Eastern India provides evidence for porcine-to-human interspecies transmission. Arch. Virol. 2009; 154(5): 733-46. https://doi.org/10.1007/s00705-009-0363-3
- Ndze V.N., Esona M.D., Achidi E.A., Gonsu K.H., Dóró R., Marton S., et al. Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010–2011: diverse combinations of the G and P genes and lack of reassortment of the backbone genes. Infect. Genet. Evol. 2014; 28: 537–60. https://doi.org/10.1016/j.meegid.2014.10.009
- Wang Y.H., Pang B.B., Ghosh S., Zhou X., Shintani T., Urushibara N., et al. Molecular epidemiology andgenetic evolution of the whole genome of G3P[8] human rotavirus in Wuhan, China, from 2000 through 2013. PLoS One. 2014; 9(3): e88850. https://doi.org/10.1371/journal.pone.0088850
- Agbemabiese C.A., Nakagomi T., Doan Y.H., Nakagomi O. Whole genomic constellation of the first human G8 rotavirus strain detected in Japan. Infect. Genet. Evol. 2015; 35: 184–93. https://doi.org/10.1016/j.meegid.2015.07.033
- Zhou X., Wang Y.H., Pang B., Chen N., Kobayashi N. Surveillance of human rotavirus in Wuhan, China (2011 – 2019): predominance of G9P[8] and emergence of G12. J. Arch. Virol. 2020; 9(10): 810–27. https://doi.org/10.3390/pathogens9100810
- Ianiro G., Heylen E., Delogu R., Zeller M., Matthijnssens J., Ruggeri F.M., et al. Genetic diversity of G9P[8] rotavirus strains circulating in Italy in 2007 and 2010 as determined by whole genome sequencing. Infect. Genet. Evol. 2013; 16: 426–32. https://doi.org/10.1016/j.meegid.2013.03.031
- Petrusha O.A., Korchevaya E.R., Mintaev R.R., Isakov I.Yu., Nikonova A.A., Meskina E.R., et al. Molecular and genetic characteristics of group a rotaviruses detected in Moscow in 2015–2020. Zhurnal mikrobiologii, epidemiologii i immunologii. 2022; 99(1): 7–19. https://doi.org/10.36233/0372-9311-208 (in Russian)
- Phan T.G., Okitsu S., Maneekarn N., Ushijima H. Genetic heterogeneity, evolution and recombination in emerging G9 rotaviruses. Infect. Genet. Evol. 2007; 7(5): 656–63. https://doi.org/10.1016/j.meegid.2007.05.001
- Hua J., Patton J.T. The carboxyl-half of the rotavirus nonstructural protein NS53 (NSP1) is not required for virus replication. J. Virol. 1994; 198(2): 567–76. https://doi.org/10.1006/viro.1994.1068
- Deo R.C., Bonanno J.B., Sonenberg N., Burley S.K. Recognition of polyadenylate RNA by the polyA binding protein cell. J. Virology. 2002; 98(6): 835–45. https://doi.org/10.1016/s0092-8674(00)81517-2
- Imataka H., Gradi A., Sonenberg N. A newly identified N-terminal amino acid sequence of human eIF4G binds polyA-binding protein and functions in polyA-dependent translation. J. Virol. 1998; 17(24): 7480–9. https://doi.org/10.1093/emboj/17.24.7480
- Mattion N. M., Cohen J., Estes M. K. The rotavirus proteins. In: Kapikian A. Z., ed. Viral Infections of the Gastrointestinal Tract.New York: Marcel Dekker Inc.;1994: 169–249.
- Vende P., Taraporewala Z.F., Patton J.T. RNA-binding activity of the rotavirus phosphoprotein NSP5 includes affinity for double-stranded RNA. J. Virol. 2002; 76(10): 5291–9. https://doi.org/10.1128/jvi.76.10.5291-5299.2002
- Taraporewala Z.F., Patton J.T. Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae. J. Virol. 2004; 101(1): 57–66. https://doi.org/10.1016/j.virusres.2003.12.006
- Bowman G.D., Nodelman I.M., Levy O., Lin S.L., Tian P., Zamb T.J., et al. Crystal structure of the oligomerization domain of NSP4 from rotavirus reveals a core metal-binding site. J. Mol. Biol. 2000; 304(5): 861–71. https://doi.org/10.1006/jmbi.2000.4250
Supplementary files
