Influence of siRNA complexes on the reproduction of influenza A virus (Orthomyxoviridae: Alphainfluenzavirus) in vivo

Cover Page

Cite item

Full Text

Abstract

Introduction. Influenza is one of the most pressing global health problems. Despite the wide range of available anti-influenza drugs, the viral drug resistance is an increasing concern and requires the search for new approaches to overcome it. A promising solution is the development of drugs with action that is based on the inhibition of the activity of cellular genes through RNA interference.

Aim. Evaluation in vivo of the preventive potential of miRNAs directed to the cellular genes FLT4, Nup98 and Nup205 against influenza infection.

Materials and methods. The A/California/7/09 strain of influenza virus (H1N1) and BALB/c mice were used in the study. The administration of siRNA and experimental infection of animals were performed intranasally. The results of the experiment were analyzed using molecular genetic and virological methods.

Results. The use of siRNA complexes Nup98.1 and Nup205.1 led to a significant decrease in viral reproduction and concentration of viral RNA on the 3rd day after infection. When two siRNA complexes (Nup98.1 and Nup205.1) were administered simultaneously, a significant decrease in viral titer and concentration of viral RNA was also noted compared with the control groups.

Conclusions. The use of siRNAs in vivo can lead to an antiviral effect when the activity of single or several cellular genes is suppressed. The results indicate that the use of siRNAs targeting the cellular genes whose expression products are involved in viral reproduction is one of the promising methods for the prevention and treatment of not only influenza, but also other respiratory infections.

About the authors

Evgeny A. Pashkov

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University); I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera

Author for correspondence.
Email: pashckov.j@yandex.ru
ORCID iD: 0000-0002-5682-4581

postgraduate of microbiology, virology and immunology department; junior researcher laboratory of virology applied

Russian Federation, 119991, Moscow; 105064, Moscow

Viktoriia Y. Momot

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: momot_v_yu@student.sechenov.ru
ORCID iD: 0000-0003-3476-5485

student of the Institute of Medical Biochemistry

Russian Federation, 119991, Moscow

Anastasia V. Pak

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: dcnnpk@gmail.com
ORCID iD: 0000-0003-4295-7858

student of the Institute of Clinical Medicine

Russian Federation, 119991, Moscow

Roman V. Samoilikov

I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera

Email: roma_sam78@mail.ru
ORCID iD: 0000-0001-6405-1390

researcher laboratory of molecular immunology

Russian Federation, 105064, Moscow

George A. Pashkov

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: georgp2004@mail.ru
ORCID iD: 0000-0003-0392-9969

student of the Institute of Children Health

Russian Federation, 119991, Moscow

Galina N. Usatova

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: g.n.usatova@mail.ru
ORCID iD: 0000-0002-8955-3570

Ph. D., private-docent Professor of Microbiology, Virology and Immunology department

Russian Federation, 119991, Moscow

Elena O. Kravtsova

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: elenakravtsov@yandex.ru
ORCID iD: 0000-0002-9100-0422

Ph. D., private-docent Professor of Microbiology, Virology and Immunology department

Russian Federation, 119991, Moscow

Alexander V. Poddubikov

I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera

Email: poddubikov@yandex.ru
ORCID iD: 0000-0001-8962-4765

Ph. D., The Head of laboratory of opportunistic pathogenic bacteria

Russian Federation, 105064, Moscow

Firaya G. Nagieva

I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera

Email: fgn42@yandex.ru
ORCID iD: 0000-0001-8204-4899

MD, private-docent, The Head of laboratory of hybrid cell cultures

Russian Federation, 105064, Moscow

Alexander V. Sidorov

I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera

Email: sashasidorov@yandex.ru
ORCID iD: 0000-0002-3561-8295

Ph. D., The Head of laboratory of DNA viruses

Russian Federation, 105064, Moscow

Evgeny P. Pashkov

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: 9153183256@mail.ru
ORCID iD: 0000-0002-4963-5053

MD, Professor of Microbiology, Virology and Immunology department

Russian Federation, 119991, Moscow

Oxana A. Svitich

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University); I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera

Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389

Corresponding member of RAS, MD, The head; Professor of Microbiology, Virology and Immunology department

Russian Federation, 119991, Moscow; 105064, Moscow

Vitaliy V. Zverev

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University); I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera

Email: vitalyzverev@outlook.com
ORCID iD: 0000-0002-0017-1892

Academician of RAS, Doctor of Biological Sciences, Scientific Adviser; Professor, The Leader of Microbiology, Virology and Immunology department

Russian Federation, 119991, Moscow; 105064, Moscow

References

  1. WHO. World Health Day 2023. Health For All. Available at: https://www.euro.who.int/ru/media-centre/events/events/2021/10/flu-awareness-campaign-2021
  2. Britannica. 1968 flu pandemic. Global outbreak. Available at: https://www.britannica.com/event/1968-flu-pandemic
  3. Trilla A., Trilla G., Daer C. The 1918 “Spanish flu” in Spain. Clin. Infect. Dis. 2008; 47(5): 668–73. https://doi.org/10.1086/590567
  4. Onishchenko G.G., Sizikova T.E., Lebedev V.N., Borisevich S.V. Analysis of promising approaches to COVID-19 vaccine development. BIOpreparations. Prevention, Diagnosis, Treatment. 2020; 20(4): 216–27. https://doi.org/10.30895/2221-996X-2020-20-4-216-227
  5. Glover R.E., Urquhart R., Lukawska J., Blumenthal K.G. Vaccinating against covid-19 in people who report allergies. BMJ. 2021; 372: n120. https://doi.org/10.1136/bmj.n120.
  6. Smith M. Vaccine safety: medical contraindications, myths, and risk communication. Pediatr. Rev. 2015; 36(6): 227–38. https://doi.org/10.1542/pir.36-6-227
  7. Wang J., Wu Y., Ma C., Fiorin G., Wang J., Pinto L.H., et al. Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc. Natl. Acad. Sci. USA. 2013; 110(4): 1315–20. https://doi.org/http://doi.org/10.1073/pnas.1216526110
  8. Hurt A.C., Ernest J., Deng Y.M., Iannello P., Besselaar T.G., Birch C., et al. The emergence and spread of resistant influenza A (H1N1) viruses in Oceania, Southeast Asia and South Asia. Antiviral. Res. 2009; (1): 90–3. https://doi.org/10.1016/j.antiviral.2009.03.003
  9. Leneva I.A., Russell R.J., Boriskin Y.S., Hay A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral. Res. 2009; 81(2): 132–40. https://doi.org/http://doi.org/10.1016/j.antiviral.2008.10.009
  10. Han J., Perez J., Schafer A., Cheng H., Peet N., Rong L., et al. Influenza virus: small molecule therapeutics and mechanisms of antiviral resistance. Curr. Med. Chem. 2018; 25(38): 5115–27. https://doi.org/10.2174/0929867324666170920165926
  11. McManus M.T., Sharp P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 2002; 3(10): 737–47. https://doi.org/10.1038/nrg908
  12. Fire A.Z. Gene silencing by double-stranded RNA. Cell Death Differ. 2007; 14(12): 1998–2012. https://doi.org/http://doi.org/10.1038/sj.sdd.4402253
  13. van der Ree M.H., van der Meer A.J., van Nuenen A.C., de Bruijne J., Ottosen S., Janssen H.L., et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment. Pharmacol. Ther. 2016; 43(1): 102–13. https://doi.org/http://doi.org/10.1111/apt.13432
  14. Soriano V., Barreiro P., Benitez L., Peña J.M., de Mendoza C. New antivirals for the treatment of chronic hepatitis B. Expert Opin. Investig. Drugs. 2017; 26(7): 843–51. https://doi.org/101080/13543784.2017.1333105
  15. Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev. Med. Virology. 2018; 28(4): 1976. https://doi.org/10.1002/rmv.1976
  16. Estrin M.A., Hussein I.T.M., Puryear W.B., Kuan A.C., Artim S.C., Runstadler J.A. Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One. 2018; 13(5): e0197246. https://doi.org/10.1371/journal.pone.0197246
  17. Rupp J.C., Locatelli M., Grieser A., Ramos A., Campbell P.J., Yi H., et al. Host cell copper transporters CTR1 and ATP7A are important for Influenza A virus replication. Virol. J. 2017; 14(1): 11. https://doi.org/10.1186/s12985-016-0671-7
  18. Adams D. Patisiran, an investigational RNAi therapeutic for patients with hereditary transthyretin-mediated (hATTR) amyloidosis: Results from the phase 3 APOLLO study. Revue Neurologique. 2018; 174(S1): S37. https://doi.org/10.1016/j.neurol.2018.01.085
  19. Zhao L. Therapeutic strategies for acute intermittent porphyria. Intractable Rare Dis. Res. 2020; 9(4): 205–16. https://doi.org/10.5582/irdr.2020.03089
  20. Pashkov E., Korchevaya E., Faizuloev E., Rtishchev A., Cherepovich B., Bystritskaya E., et al. Knockdown of FLT4, Nup98, and Nup205 cellular genes effectively suppresses the reproduction of influenza virus strain A/WSN/1933 (H1N1) in vitro. Infect. Disord. Drug Targets. 2022; 22(5): 100–8. https://doi.org/10.2174/1871526522666220325121403
  21. Pashkov E.A., Korchevaya E.R., Faizuloev E.B., Pashkov E.P., Zaiceva T.A., Rtishchev A.A., et al. Creation of a model for studying the antiviral effect of small interfering RNAs in vitro. Sanitary Doctor. 2022; (1): 65–74. https://doi.org/10.33920/med-08-2201-07 EDN: https://elibrary.ru/paaeqt (in Russian)
  22. Pashkov E.A., Korotysheva M.O., Pak A.V., Faizuloev E.B., Sidorov A.V., Poddubikov A.V., et al. Investigation of the anti-influenza activity of siRNA complexes against the cellular genes FLT4, Nup98, and Nup205 in vitro. Fine Chem. Technol. 2022; 17(2): 140–51. https://doi.org/10.32362/2410-6593-2022-17-2-140-151
  23. Tompkins S.M., Lo C.Y., Tumpey T.M., Epstein S.L. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. USA. 2004; 101(23): 8682–6. https://doi.org/10.1073/pnas.0402630101
  24. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4): 402–8. https://doi.org/10.1006/meth.2001.1262
  25. Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016; 5(2): 85–6. https://doi.org/10.5501/wjv.v5.i2.85
  26. Czuppon P., Pfaffelhuber P. Limits of noise for autoregulated gene expression. J. Math. Biol. 2018; 77(4): 1153–91. https://doi.org/10.1007/s00285-018-1248-4
  27. Eierhoff T., Hrincius E.R., Rescher U., Ludwig S., Ehrhardt C. The Epidermal Growth Factor Receptor (EGFR) promotes uptake of influenza А viruses (IAV) into host cells. PLoS Pathog. 2010; 6(9): e1001099. https://doi.org/10.1371/journal.ppat.1001099
  28. Shaw M.L., Stertz S. Role of host genes in influenza virus replication. Curr. Top. Microbiol. Immunol. 2018; 419: 151–89. https://doi.org/10.1007/82_2017_30
  29. Watanabe T., Watanabe S., Kawaoka Y. Cellular networks involved in the influenza virus life cycle. Cell Host Microbe. 2010; 7(6): 427–39. https://doi.org/10.1016/j.chom.2010.05.008
  30. TTP. How To Perform The Delta-Delta Ct Method. Available at: https://toptipbio.com/delta-delta-ct-pcr/
  31. Epstein S.L., Tumpey T.M., Misplon J.A., Lo C.Y., Cooper L.A., Subbarao K., et al. DNA vaccine expressing conserved influenza virus proteins protective against H5N1 challenge infection in mice. Emerg. Infect. Dis. 2002; 8(8): 796–801. https://doi.org/10.3201/eid0805.010476
  32. Liang S., Mozdzanowska K., Palladino G., Gerhard W. Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity. J. Immunol. 1994; 152(4): 1653–61.
  33. Pak A.V., Pashkov E.A., Abramova N.D., Poddubikov A.V., Nagieva F.G., Bogdanova E.A., et al. Effect of antiviral siRNAs on the production of cytokines in vitro. Fine Chem. Technol. 2022; 17(5): 384–93. https://doi.org/10.32362/2410-6593-2022-17-5-384-393
  34. Pashkov E.A., Pak A.V., Abramova N.D., Yakovleva I.V., Vartanova N.O., Bogdanova E.A., et al. Studying expression of IL-1β gene under the action of siRNA complexes with anti-influenza effect. Rossiyskiy immunologicheskiy zhurnal. 2022; 25(4): 485–90. http://doi.org/10.46235/1028-7221-1202-SEO EDN: https://www.elibrary.ru/bbqdhe (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of siRNA on the expression of genes FLT4, Nup98, and Nup205.The X-axis shows the names of siRNAs targeting the genes of the same name. The Y-axis shows the changes in the expression of the FLT4, Nup98 and Nup205 genes after treatment of cells with siRNA complexes relative to nonspecific siRNA L2, expressed (in %). *р ≤ 0.05.

Download (73KB)
3. Fig. 2. The effect of siRNA complexes on dynamic changes of mice body weight during three days after infection with the influenza A/California/7/09 (H1N1) virus.The X-axis shows siRNAs and respective target cellular genes of the same name. The Y-axis shows the changes in body weight, expressed (in %). *р ≤ 0.05.

Download (86KB)
4. Fig. 3. Effect of siRNA suppression of the Nup98 and Nup205 genes on the reproduction of influenza A/California/7/09 (H1N1) virus on the third day after infection with LD50.The X-axis shows the name of the siRNA. The Y-axis shows the viral titers. *р ≤ 0.05

Download (37KB)
5. Fig. 4. Effect of siRNA suppression of Nup98 and Nup205 genes on concentration of viral RNA on the third day after infection with LD50.The X-axis shows the names of siRNAs. The Y-axis shows the concentration of viral RNA. *р ≤ 0.05.

Download (42KB)
6. Fig. 5. Effect of the Nup98.1/Nup205.1 siRNA pool on the reproduction of influenza A/California/7/09 (H1N1) virus on the third day after infection with LD50.The X-axis shows the names of the siRNAs. The Y-axis shows the viral titers. *р ≤ 0.05.

Download (33KB)
7. Fig. 6. Effect of siRNA suppression of Nup98 and Nup205 genes on concentration of viral RNA on the third day after challenge with LD50.The X-axis shows the names of siRNAs. The Y-axis shows the concentration of viral RNA. *p < 0.05.

Download (34KB)

Copyright (c) 2023 Pashkov E.A., Momot V.Y., Pak A.V., Samoilikov R.V., Pashkov G.A., Usatova G.N., Kravtsova E.O., Poddubikov A.V., Nagieva F.G., Sidorov A.V., Pashkov E.P., Svitich O.A., Zverev V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».