Influence of siRNA complexes on the reproduction of influenza A virus (Orthomyxoviridae: Alphainfluenzavirus) in vivo
- Authors: Pashkov E.A.1,2, Momot V.Y.1, Pak A.V.1, Samoilikov R.V.2, Pashkov G.A.1, Usatova G.N.1, Kravtsova E.O.1, Poddubikov A.V.2, Nagieva F.G.2, Sidorov A.V.2, Pashkov E.P.1, Svitich O.A.1,2, Zverev V.V.1,2
-
Affiliations:
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
- Issue: Vol 68, No 2 (2023)
- Pages: 95-104
- Section: ORIGINAL RESEARCH
- URL: https://journal-vniispk.ru/0507-4088/article/view/132621
- DOI: https://doi.org/10.36233/0507-4088-159
- EDN: https://elibrary.ru/rheuqd
- ID: 132621
Cite item
Full Text
Abstract
Introduction. Influenza is one of the most pressing global health problems. Despite the wide range of available anti-influenza drugs, the viral drug resistance is an increasing concern and requires the search for new approaches to overcome it. A promising solution is the development of drugs with action that is based on the inhibition of the activity of cellular genes through RNA interference.
Aim. Evaluation in vivo of the preventive potential of miRNAs directed to the cellular genes FLT4, Nup98 and Nup205 against influenza infection.
Materials and methods. The A/California/7/09 strain of influenza virus (H1N1) and BALB/c mice were used in the study. The administration of siRNA and experimental infection of animals were performed intranasally. The results of the experiment were analyzed using molecular genetic and virological methods.
Results. The use of siRNA complexes Nup98.1 and Nup205.1 led to a significant decrease in viral reproduction and concentration of viral RNA on the 3rd day after infection. When two siRNA complexes (Nup98.1 and Nup205.1) were administered simultaneously, a significant decrease in viral titer and concentration of viral RNA was also noted compared with the control groups.
Conclusions. The use of siRNAs in vivo can lead to an antiviral effect when the activity of single or several cellular genes is suppressed. The results indicate that the use of siRNAs targeting the cellular genes whose expression products are involved in viral reproduction is one of the promising methods for the prevention and treatment of not only influenza, but also other respiratory infections.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Evgeny A. Pashkov
Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University); I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
Author for correspondence.
Email: pashckov.j@yandex.ru
ORCID iD: 0000-0002-5682-4581
postgraduate of microbiology, virology and immunology department; junior researcher laboratory of virology applied
Russian Federation, 119991, Moscow; 105064, MoscowViktoriia Y. Momot
Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: momot_v_yu@student.sechenov.ru
ORCID iD: 0000-0003-3476-5485
student of the Institute of Medical Biochemistry
Russian Federation, 119991, MoscowAnastasia V. Pak
Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: dcnnpk@gmail.com
ORCID iD: 0000-0003-4295-7858
student of the Institute of Clinical Medicine
Russian Federation, 119991, MoscowRoman V. Samoilikov
I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
Email: roma_sam78@mail.ru
ORCID iD: 0000-0001-6405-1390
researcher laboratory of molecular immunology
Russian Federation, 105064, MoscowGeorge A. Pashkov
Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: georgp2004@mail.ru
ORCID iD: 0000-0003-0392-9969
student of the Institute of Children Health
Russian Federation, 119991, MoscowGalina N. Usatova
Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: g.n.usatova@mail.ru
ORCID iD: 0000-0002-8955-3570
Ph. D., private-docent Professor of Microbiology, Virology and Immunology department
Russian Federation, 119991, MoscowElena O. Kravtsova
Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: elenakravtsov@yandex.ru
ORCID iD: 0000-0002-9100-0422
Ph. D., private-docent Professor of Microbiology, Virology and Immunology department
Russian Federation, 119991, MoscowAlexander V. Poddubikov
I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
Email: poddubikov@yandex.ru
ORCID iD: 0000-0001-8962-4765
Ph. D., The Head of laboratory of opportunistic pathogenic bacteria
Russian Federation, 105064, MoscowFiraya G. Nagieva
I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
Email: fgn42@yandex.ru
ORCID iD: 0000-0001-8204-4899
MD, private-docent, The Head of laboratory of hybrid cell cultures
Russian Federation, 105064, MoscowAlexander V. Sidorov
I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
Email: sashasidorov@yandex.ru
ORCID iD: 0000-0002-3561-8295
Ph. D., The Head of laboratory of DNA viruses
Russian Federation, 105064, MoscowEvgeny P. Pashkov
Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: 9153183256@mail.ru
ORCID iD: 0000-0002-4963-5053
MD, Professor of Microbiology, Virology and Immunology department
Russian Federation, 119991, MoscowOxana A. Svitich
Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University); I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389
Corresponding member of RAS, MD, The head; Professor of Microbiology, Virology and Immunology department
Russian Federation, 119991, Moscow; 105064, MoscowVitaliy V. Zverev
Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University); I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
Email: vitalyzverev@outlook.com
ORCID iD: 0000-0002-0017-1892
Academician of RAS, Doctor of Biological Sciences, Scientific Adviser; Professor, The Leader of Microbiology, Virology and Immunology department
Russian Federation, 119991, Moscow; 105064, MoscowReferences
- WHO. World Health Day 2023. Health For All. Available at: https://www.euro.who.int/ru/media-centre/events/events/2021/10/flu-awareness-campaign-2021
- Britannica. 1968 flu pandemic. Global outbreak. Available at: https://www.britannica.com/event/1968-flu-pandemic
- Trilla A., Trilla G., Daer C. The 1918 “Spanish flu” in Spain. Clin. Infect. Dis. 2008; 47(5): 668–73. https://doi.org/10.1086/590567
- Onishchenko G.G., Sizikova T.E., Lebedev V.N., Borisevich S.V. Analysis of promising approaches to COVID-19 vaccine development. BIOpreparations. Prevention, Diagnosis, Treatment. 2020; 20(4): 216–27. https://doi.org/10.30895/2221-996X-2020-20-4-216-227
- Glover R.E., Urquhart R., Lukawska J., Blumenthal K.G. Vaccinating against covid-19 in people who report allergies. BMJ. 2021; 372: n120. https://doi.org/10.1136/bmj.n120.
- Smith M. Vaccine safety: medical contraindications, myths, and risk communication. Pediatr. Rev. 2015; 36(6): 227–38. https://doi.org/10.1542/pir.36-6-227
- Wang J., Wu Y., Ma C., Fiorin G., Wang J., Pinto L.H., et al. Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc. Natl. Acad. Sci. USA. 2013; 110(4): 1315–20. https://doi.org/http://doi.org/10.1073/pnas.1216526110
- Hurt A.C., Ernest J., Deng Y.M., Iannello P., Besselaar T.G., Birch C., et al. The emergence and spread of resistant influenza A (H1N1) viruses in Oceania, Southeast Asia and South Asia. Antiviral. Res. 2009; (1): 90–3. https://doi.org/10.1016/j.antiviral.2009.03.003
- Leneva I.A., Russell R.J., Boriskin Y.S., Hay A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral. Res. 2009; 81(2): 132–40. https://doi.org/http://doi.org/10.1016/j.antiviral.2008.10.009
- Han J., Perez J., Schafer A., Cheng H., Peet N., Rong L., et al. Influenza virus: small molecule therapeutics and mechanisms of antiviral resistance. Curr. Med. Chem. 2018; 25(38): 5115–27. https://doi.org/10.2174/0929867324666170920165926
- McManus M.T., Sharp P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 2002; 3(10): 737–47. https://doi.org/10.1038/nrg908
- Fire A.Z. Gene silencing by double-stranded RNA. Cell Death Differ. 2007; 14(12): 1998–2012. https://doi.org/http://doi.org/10.1038/sj.sdd.4402253
- van der Ree M.H., van der Meer A.J., van Nuenen A.C., de Bruijne J., Ottosen S., Janssen H.L., et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment. Pharmacol. Ther. 2016; 43(1): 102–13. https://doi.org/http://doi.org/10.1111/apt.13432
- Soriano V., Barreiro P., Benitez L., Peña J.M., de Mendoza C. New antivirals for the treatment of chronic hepatitis B. Expert Opin. Investig. Drugs. 2017; 26(7): 843–51. https://doi.org/101080/13543784.2017.1333105
- Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev. Med. Virology. 2018; 28(4): 1976. https://doi.org/10.1002/rmv.1976
- Estrin M.A., Hussein I.T.M., Puryear W.B., Kuan A.C., Artim S.C., Runstadler J.A. Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One. 2018; 13(5): e0197246. https://doi.org/10.1371/journal.pone.0197246
- Rupp J.C., Locatelli M., Grieser A., Ramos A., Campbell P.J., Yi H., et al. Host cell copper transporters CTR1 and ATP7A are important for Influenza A virus replication. Virol. J. 2017; 14(1): 11. https://doi.org/10.1186/s12985-016-0671-7
- Adams D. Patisiran, an investigational RNAi therapeutic for patients with hereditary transthyretin-mediated (hATTR) amyloidosis: Results from the phase 3 APOLLO study. Revue Neurologique. 2018; 174(S1): S37. https://doi.org/10.1016/j.neurol.2018.01.085
- Zhao L. Therapeutic strategies for acute intermittent porphyria. Intractable Rare Dis. Res. 2020; 9(4): 205–16. https://doi.org/10.5582/irdr.2020.03089
- Pashkov E., Korchevaya E., Faizuloev E., Rtishchev A., Cherepovich B., Bystritskaya E., et al. Knockdown of FLT4, Nup98, and Nup205 cellular genes effectively suppresses the reproduction of influenza virus strain A/WSN/1933 (H1N1) in vitro. Infect. Disord. Drug Targets. 2022; 22(5): 100–8. https://doi.org/10.2174/1871526522666220325121403
- Pashkov E.A., Korchevaya E.R., Faizuloev E.B., Pashkov E.P., Zaiceva T.A., Rtishchev A.A., et al. Creation of a model for studying the antiviral effect of small interfering RNAs in vitro. Sanitary Doctor. 2022; (1): 65–74. https://doi.org/10.33920/med-08-2201-07 EDN: https://elibrary.ru/paaeqt (in Russian)
- Pashkov E.A., Korotysheva M.O., Pak A.V., Faizuloev E.B., Sidorov A.V., Poddubikov A.V., et al. Investigation of the anti-influenza activity of siRNA complexes against the cellular genes FLT4, Nup98, and Nup205 in vitro. Fine Chem. Technol. 2022; 17(2): 140–51. https://doi.org/10.32362/2410-6593-2022-17-2-140-151
- Tompkins S.M., Lo C.Y., Tumpey T.M., Epstein S.L. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. USA. 2004; 101(23): 8682–6. https://doi.org/10.1073/pnas.0402630101
- Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4): 402–8. https://doi.org/10.1006/meth.2001.1262
- Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016; 5(2): 85–6. https://doi.org/10.5501/wjv.v5.i2.85
- Czuppon P., Pfaffelhuber P. Limits of noise for autoregulated gene expression. J. Math. Biol. 2018; 77(4): 1153–91. https://doi.org/10.1007/s00285-018-1248-4
- Eierhoff T., Hrincius E.R., Rescher U., Ludwig S., Ehrhardt C. The Epidermal Growth Factor Receptor (EGFR) promotes uptake of influenza А viruses (IAV) into host cells. PLoS Pathog. 2010; 6(9): e1001099. https://doi.org/10.1371/journal.ppat.1001099
- Shaw M.L., Stertz S. Role of host genes in influenza virus replication. Curr. Top. Microbiol. Immunol. 2018; 419: 151–89. https://doi.org/10.1007/82_2017_30
- Watanabe T., Watanabe S., Kawaoka Y. Cellular networks involved in the influenza virus life cycle. Cell Host Microbe. 2010; 7(6): 427–39. https://doi.org/10.1016/j.chom.2010.05.008
- TTP. How To Perform The Delta-Delta Ct Method. Available at: https://toptipbio.com/delta-delta-ct-pcr/
- Epstein S.L., Tumpey T.M., Misplon J.A., Lo C.Y., Cooper L.A., Subbarao K., et al. DNA vaccine expressing conserved influenza virus proteins protective against H5N1 challenge infection in mice. Emerg. Infect. Dis. 2002; 8(8): 796–801. https://doi.org/10.3201/eid0805.010476
- Liang S., Mozdzanowska K., Palladino G., Gerhard W. Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity. J. Immunol. 1994; 152(4): 1653–61.
- Pak A.V., Pashkov E.A., Abramova N.D., Poddubikov A.V., Nagieva F.G., Bogdanova E.A., et al. Effect of antiviral siRNAs on the production of cytokines in vitro. Fine Chem. Technol. 2022; 17(5): 384–93. https://doi.org/10.32362/2410-6593-2022-17-5-384-393
- Pashkov E.A., Pak A.V., Abramova N.D., Yakovleva I.V., Vartanova N.O., Bogdanova E.A., et al. Studying expression of IL-1β gene under the action of siRNA complexes with anti-influenza effect. Rossiyskiy immunologicheskiy zhurnal. 2022; 25(4): 485–90. http://doi.org/10.46235/1028-7221-1202-SEO EDN: https://www.elibrary.ru/bbqdhe (in Russian)
Supplementary files
