Intranasal vaccine against COVID-19 based on a recombinant variant of the Sendai virus (Paramyxoviridae: Respirovirus) strain Moscow
- Authors: Kudrov G.A.1, Zainutdinov S.S.1, Grazhdantseva A.A.1, Shipovalov A.V.1, Sivolobova G.F.1, Semenova A.V.1, Merkuleva I.A.1, Shcherbakov D.N.1, Taranov O.S.1, Zaykovskaya A.V.1, Shulgina I.S.1, Pyankov O.V.1, Kochneva G.V.1
-
Affiliations:
- State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
- Issue: Vol 68, No 3 (2023)
- Pages: 215-227
- Section: ORIGINAL RESEARCH
- URL: https://journal-vniispk.ru/0507-4088/article/view/132634
- DOI: https://doi.org/10.36233/0507-4088-172
- EDN: https://elibrary.ru/tyngdx
- ID: 132634
Cite item
Full Text
Abstract
Introduction. Intranasal vaccination using live vector vaccines based on non-pathogenic or slightly pathogenic viruses is the one of the most convenient, safe and effective ways to prevent respiratory infections, including COVID-19. Sendai virus is the best suited for this purpose, since it is respiratory virus and is capable of limited replication in human bronchial epithelial cells without causing disease.
The aim of the work is to design and study the vaccine properties of recombinant Sendai virus, Moscow strain, expressing secreted receptor-binding domain of SARS-CoV-2 Delta strain S protein (RBDdelta) during a single intranasal immunization.
Materials and methods. Recombinant Sendai virus carrying insertion of RBDdelta transgene between P and M genes was constructed using reverse genetics and synthetic biology methods. Expression of RBDdelta was analyzed by Western blot. Vaccine properties were studied in two models: Syrian hamsters and BALB/c mice. Immunogenicity was evaluated by ELISA and virus-neutralization assays. Protectiveness was assessed by quantitation of SARS-CoV-2 RNA in RT-PCR and histological analysis of the lungs.
Results. Based on Sendai virus Moscow strain, a recombinant Sen-RBDdelta(M) was constructed that expressed a secreted RBDdelta immunologically identical to natural SARS-CoV-2 protein. A single intranasal administration of Sen-RBDdelta(M) to hamsters and mice significantly, by 15 and 107 times, respectively, reduced replicative activity of SARS-CoV-2 in lungs of animals, preventing the development of pneumonia. An effective induction of virus-neutralizing antibodies has also been demonstrated in mice.
Conclusion. Sen-RBDdelta(M) is a promising vaccine construct against SARS-CoV-2 infection and has a protective properties even after a single intranasal introduction.
Full Text
##article.viewOnOriginalSite##About the authors
Gleb A. Kudrov
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Email: kudrov_ga@vector.nsc.ru
ORCID iD: 0000-0002-8251-7040
junior research assistant
Russian Federation, 630559, Koltsovo, Novosibirsk RegionSergei S. Zainutdinov
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Email: zaynutdinov_ss@vector.nsc.ru
ORCID iD: 0000-0001-5818-4402
researcher
Russian Federation, 630559, Koltsovo, Novosibirsk RegionAntonina A. Grazhdantseva
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Email: gaa@vector.nsc.ru
ORCID iD: 0000-0001-7712-3699
PhD, senior researcher
Russian Federation, 630559, Koltsovo, Novosibirsk RegionAndrey V. Shipovalov
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Email: shipovalov_av@vector.nsc.ru
ORCID iD: 0000-0003-1201-8307
researcher
Russian Federation, 630559, Koltsovo, Novosibirsk RegionGalina F. Sivolobova
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Email: sgf@vector.nsc.ru
ORCID iD: 0000-0002-8362-0314
PhD, senior researcher
Russian Federation, 630559, Koltsovo, Novosibirsk RegionAnastasiya V. Semenova
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Email: tkacheva_av@vector.nsc.ru
ORCID iD: 0000-0001-7767-0537
PhD, senior researcher
Russian Federation, 630559, Koltsovo, Novosibirsk RegionIuliia A. Merkuleva
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Email: merkuleva_yua@vector.nsc.ru
ORCID iD: 0000-0002-6974-0686
PhD, junior research assistant
Russian Federation, 630559, Koltsovo, Novosibirsk RegionDmitry N. Shcherbakov
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Email: scherbakov_dn@vector.nsc.ru
ORCID iD: 0000-0001-8023-4453
PhD, head of laboratory
Russian Federation, 630559, Koltsovo, Novosibirsk RegionOleg S. Taranov
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Email: taranov@vector.nsc.ru
ORCID iD: 0000-0002-6746-8092
head of department
Russian Federation, 630559, Koltsovo, Novosibirsk RegionAnna V. Zaykovskaya
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Email: zaykovskaya_av@vector.nsc.ru
ORCID iD: 0000-0002-0450-5212
PhD, senior researcher
Russian Federation, 630559, Koltsovo, Novosibirsk RegionIrina S. Shulgina
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Email: Shulgina_is@vector.nsc.ru
ORCID iD: 0000-0002-6850-338X
graduate student
Russian Federation, 630559, Koltsovo, Novosibirsk RegionOleg V. Pyankov
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Email: pyankov@vector.nsc.ru
ORCID iD: 0000-0003-3340-8750
PhD, head of department
Russian Federation, 630559, Koltsovo, Novosibirsk RegionGalina V. Kochneva
State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor
Author for correspondence.
Email: kochneva@vector.nsc.ru
ORCID iD: 0000-0002-2420-0483
Dr. Sci. (Biol.), head of laboratory
Russian Federation, 630559, Koltsovo, Novosibirsk RegionReferences
- WHO. COVID-19 vaccine tracker and landscape. Available at: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
- Wang N., Shang J., Jiang S., Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front. Microbiol. 2020; 11: 298. https://doi.org/10.3389/fmicb.2020.00298
- Lund F.E., Randall T.D. Scent of a vaccine. Science. 2021; 373(6553): 397–9. https://doi.org/10.1126/science.abg9857
- Zaynutdinov S.S., Sivolobova G.F., Loktev V.B., Kochneva G.V. Mucosal immunity and vaccines against viral infections. Voprosy virusologii. 2021; 66(6): 399–408. https://doi.org/10.36233/0507-4088-82 (in Russian)
- Zaychuk T.A., Nechipurenko Yu.D., Adzhubey A.A., Onikienko S.B., Chereshnev V.A., Zaynutdinov S.S., et al. The challenges of vaccine development against betacoronaviruses: antibody dependent enhancementand sendai virus as a possible vaccine vector. Molekulyarnaya biologiya. 2020; 54(6): 922–38. https://doi.org/10.31857/S0026898420060154 https://www.elibrary.ru/cfddrc (in Russian)
- Cantell K., Hirvonen S., Kauppinen H.L., Myllylä G. Production of interferon in human leukocytes from normal donors with the use of Sendai virus. Methods Enzymol. 1981; 78(Pt. A): 29–38. https://doi.org/10.1016/0076-6879(81)78094-7
- Nyman T.A., Tölö H., Parkkinen J., Kalkkinen N. Identification of nine interferon-alpha subtypes produced by Sendai virus-induced human peripheral blood leucocytes. Biochem. J. 1998; 329(Pt. 2): 295–302. https://doi.org/10.1042/bj3290295
- Matsumoto Y., Ohta K., Kolakofsky D., Nishio M. The control of paramyxovirus genome hexamer length and mRNA editing. RNA. 2018; 24(4): 461–7. https://doi.org/10.1261/rna.065243.117
- Morimoto S., Saeki K., Takeshita M., Hirano K., Shirakawa M., Yamada Y., et al. Intranasal Sendai virus-based SARS-CoV-2 vaccine using a mouse model. Genes Cells. 2023; 28(1): 29–41. https://doi.org/10.1111/gtc.12992
- Scaggs Huang F., Bernstein D.I., Slobod K.S., Portner A., Takimoto T., Russell C.J., et al. Safety and immunogenicity of an intranasal Sendai virus-based vaccine for human parainfluenza virus type I and respiratory syncytial virus (SeVRSV) in adults. Hum. Vaccin. Immunother. 2021; 17(2): 554–9. https://doi.org/10.1080/21645515.2020.1779517
- Russell C.J., Hurwitz J.L. Sendai virus-vectored vaccines that express envelope glycoproteins of respiratory viruses. Viruses. 2021; 13(6): 1023. https://doi.org/10.3390/v13061023
- Zainutdinov S.S., Tikunov A.Y., Matveeva O.V., Netesov S.V., Kochneva G.V. Complete genome sequence of the oncolytic Sendai virus strain Moscow. Genome Announc. 2016; 4(4): e00818–16. https://doi.org/10.1128/genomea.00818-16
- Kochneva G.V., Grazhdantseva A.A., Sivolobova G.F., Zaynutdinov S.S. A set of recombinant plasmid DNA for obtaining recombinant Sendai viruses strain Moscow (variants). Patent RF № 2787724; 2023. (in Russian)
- Addgene. T7opt in pCAGGS. Available at: https://www.addgene.org/65974
- NovoPro. pCDH-EF1a-MCS-IRES-zeo vector map and sequence. Available at: https://www.novoprolabs.com/vector/Vgm4tkma
- Merkuleva I.A., Shcherbakov D.N., Borgoyakova M.B., Shanshin D.V., Rudometov A.P., Karpenko L.I., et al. Comparative immunogenicity of the recombinant receptor-binding domain of protein S SARS-CoV-2 obtained in prokaryotic and mammalian expression systems. Vaccines (Basel). 2022; 10(1): 96. https://doi.org/10.3390/vaccines10010096
- Tatsumoto N., Miyauchi T., Arditi M., Yamashita M. Quantification of infectious Sendai virus using plaque assay. Bio Protoc. 2018; 8(21): e3068. https://doi.org/10.21769/bioprotoc.3068
- Shipovalov A.V., Kudrov G.A., Tomilov A.A., Bodnev S.A., Boldyrev N.D., Ovchinnikova A.S., et al. Pathogenicity of the SARS-COV-2 virus variants of concern for the Syrian golden hamster. Problemy osobo opasnykh infektsiy. 2022; (3): 164–9. https://doi.org/10.21055/0370-1069-2022-3-164-169 https://www.elibrary.ru/mirlbr (in Russian)
- Shipovalov A.V., Kudrov G.A., Tomilov A.A., Bodnev S.A., Boldyrev N.D., Ovchinnikova A.S., et al. Susceptibility to SARS-CoV-2 virus variants of concern in mouse models. Problemy osobo opasnykh infektsiy. 2022; (1): 148–55. https://doi.org/10.21055/0370-1069-2022-1-148-155 https://www.elibrary.ru/vgamvf (in Russian)
- Matveeva O.V., Kochneva G.V., Netesov S.V., Onikienko S.B., Chumakov P.M. Mechanisms of oncolysis by paramyxovirus Sendai. Acta Naturae. 2015; 7(2): 6–16.
- Merkul’eva Yu.A., Shcherbakov D.N., Belen’kaya S.V., Isaeva A.A., Nesmeyanova V.S., Shan’shin D.V., et al. Integrative plasmid vector pVEAL2-S-RBD providing expression and secretion of the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 coronavirus in mammalian cells, recombinant strain of the CHO-R1-RBD cell line and recombinant SARS-CoV-2 RBD protein produced by the specified strain of the cell line CHO-K1-RBD. Patent RF № 2752858; 2021.
- Merkuleva I.A., Shcherbakov D.N., Borgoyakova M.B., Isaeva A.A., Nesmeyanova V.S., Volkova N.V., et al. Are hamsters a suitable model for evaluating the immunogenicity of RBD-based anti-COVID-19 subunit vaccines? Viruses. 2022; 14(5): 1060. https://doi.org/10.3390/v14051060
- Ilinykh P.A., Periasamy S., Huang K., Kuzmina N.A., Ramanathan P., Meyer M.N., et al. A single intranasal dose of human parainfluenza virus type 3-vectored vaccine induces effective antibody and memory T cell response in the lungs and protects hamsters against SARS-CoV-2. NPJ Vaccines. 2022; 7(1): 47. https://doi.org/10.1038/s41541-022-00471-3
- Castro J.T., Fumagalli M.J., Hojo-Souza N.S., Azevedo P., Salazar N., Rattis B., et al. Neutralizing antibody – independent immunity to SARS-CoV-2 in hamsters and hACE-2 transgenic mice immunized with a RBD/nucleocapsid fusion protein. BioRxiv. 2021. Preprint. https://doi.org/10.1101/2021.09.16.460663
Supplementary files
