Intranasal vaccine against COVID-19 based on a recombinant variant of the Sendai virus (Paramyxoviridae: Respirovirus) strain Moscow

Cover Page

Cite item

Full Text

Abstract

Introduction. Intranasal vaccination using live vector vaccines based on non-pathogenic or slightly pathogenic viruses is the one of the most convenient, safe and effective ways to prevent respiratory infections, including COVID-19. Sendai virus is the best suited for this purpose, since it is respiratory virus and is capable of limited replication in human bronchial epithelial cells without causing disease.

The aim of the work is to design and study the vaccine properties of recombinant Sendai virus, Moscow strain, expressing secreted receptor-binding domain of SARS-CoV-2 Delta strain S protein (RBDdelta) during a single intranasal immunization.

Materials and methods. Recombinant Sendai virus carrying insertion of RBDdelta transgene between P and M genes was constructed using reverse genetics and synthetic biology methods. Expression of RBDdelta was analyzed by Western blot. Vaccine properties were studied in two models: Syrian hamsters and BALB/c mice. Immunogenicity was evaluated by ELISA and virus-neutralization assays. Protectiveness was assessed by quantitation of SARS-CoV-2 RNA in RT-PCR and histological analysis of the lungs.

Results. Based on Sendai virus Moscow strain, a recombinant Sen-RBDdelta(M) was constructed that expressed a secreted RBDdelta immunologically identical to natural SARS-CoV-2 protein. A single intranasal administration of Sen-RBDdelta(M) to hamsters and mice significantly, by 15 and 107 times, respectively, reduced replicative activity of SARS-CoV-2 in lungs of animals, preventing the development of pneumonia. An effective induction of virus-neutralizing antibodies has also been demonstrated in mice.

Conclusion. Sen-RBDdelta(M) is a promising vaccine construct against SARS-CoV-2 infection and has a protective properties even after a single intranasal introduction.

About the authors

Gleb A. Kudrov

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Email: kudrov_ga@vector.nsc.ru
ORCID iD: 0000-0002-8251-7040

junior research assistant

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Sergei S. Zainutdinov

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Email: zaynutdinov_ss@vector.nsc.ru
ORCID iD: 0000-0001-5818-4402

researcher

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Antonina A. Grazhdantseva

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Email: gaa@vector.nsc.ru
ORCID iD: 0000-0001-7712-3699

PhD, senior researcher

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Andrey V. Shipovalov

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Email: shipovalov_av@vector.nsc.ru
ORCID iD: 0000-0003-1201-8307

researcher

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Galina F. Sivolobova

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Email: sgf@vector.nsc.ru
ORCID iD: 0000-0002-8362-0314

PhD, senior researcher

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Anastasiya V. Semenova

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Email: tkacheva_av@vector.nsc.ru
ORCID iD: 0000-0001-7767-0537

PhD, senior researcher

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Iuliia A. Merkuleva

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Email: merkuleva_yua@vector.nsc.ru
ORCID iD: 0000-0002-6974-0686

PhD, junior research assistant

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Dmitry N. Shcherbakov

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Email: scherbakov_dn@vector.nsc.ru
ORCID iD: 0000-0001-8023-4453

PhD, head of laboratory

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Oleg S. Taranov

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Email: taranov@vector.nsc.ru
ORCID iD: 0000-0002-6746-8092

head of department

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Anna V. Zaykovskaya

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Email: zaykovskaya_av@vector.nsc.ru
ORCID iD: 0000-0002-0450-5212

PhD, senior researcher

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Irina S. Shulgina

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Email: Shulgina_is@vector.nsc.ru
ORCID iD: 0000-0002-6850-338X

graduate student

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Oleg V. Pyankov

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Email: pyankov@vector.nsc.ru
ORCID iD: 0000-0003-3340-8750

PhD, head of department

Russian Federation, 630559, Koltsovo, Novosibirsk Region

Galina V. Kochneva

State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor

Author for correspondence.
Email: kochneva@vector.nsc.ru
ORCID iD: 0000-0002-2420-0483

Dr. Sci. (Biol.), head of laboratory

Russian Federation, 630559, Koltsovo, Novosibirsk Region

References

  1. WHO. COVID-19 vaccine tracker and landscape. Available at: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
  2. Wang N., Shang J., Jiang S., Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front. Microbiol. 2020; 11: 298. https://doi.org/10.3389/fmicb.2020.00298
  3. Lund F.E., Randall T.D. Scent of a vaccine. Science. 2021; 373(6553): 397–9. https://doi.org/10.1126/science.abg9857
  4. Zaynutdinov S.S., Sivolobova G.F., Loktev V.B., Kochneva G.V. Mucosal immunity and vaccines against viral infections. Voprosy virusologii. 2021; 66(6): 399–408. https://doi.org/10.36233/0507-4088-82 (in Russian)
  5. Zaychuk T.A., Nechipurenko Yu.D., Adzhubey A.A., Onikienko S.B., Chereshnev V.A., Zaynutdinov S.S., et al. The challenges of vaccine development against betacoronaviruses: antibody dependent enhancementand sendai virus as a possible vaccine vector. Molekulyarnaya biologiya. 2020; 54(6): 922–38. https://doi.org/10.31857/S0026898420060154 https://www.elibrary.ru/cfddrc (in Russian)
  6. Cantell K., Hirvonen S., Kauppinen H.L., Myllylä G. Production of interferon in human leukocytes from normal donors with the use of Sendai virus. Methods Enzymol. 1981; 78(Pt. A): 29–38. https://doi.org/10.1016/0076-6879(81)78094-7
  7. Nyman T.A., Tölö H., Parkkinen J., Kalkkinen N. Identification of nine interferon-alpha subtypes produced by Sendai virus-induced human peripheral blood leucocytes. Biochem. J. 1998; 329(Pt. 2): 295–302. https://doi.org/10.1042/bj3290295
  8. Matsumoto Y., Ohta K., Kolakofsky D., Nishio M. The control of paramyxovirus genome hexamer length and mRNA editing. RNA. 2018; 24(4): 461–7. https://doi.org/10.1261/rna.065243.117
  9. Morimoto S., Saeki K., Takeshita M., Hirano K., Shirakawa M., Yamada Y., et al. Intranasal Sendai virus-based SARS-CoV-2 vaccine using a mouse model. Genes Cells. 2023; 28(1): 29–41. https://doi.org/10.1111/gtc.12992
  10. Scaggs Huang F., Bernstein D.I., Slobod K.S., Portner A., Takimoto T., Russell C.J., et al. Safety and immunogenicity of an intranasal Sendai virus-based vaccine for human parainfluenza virus type I and respiratory syncytial virus (SeVRSV) in adults. Hum. Vaccin. Immunother. 2021; 17(2): 554–9. https://doi.org/10.1080/21645515.2020.1779517
  11. Russell C.J., Hurwitz J.L. Sendai virus-vectored vaccines that express envelope glycoproteins of respiratory viruses. Viruses. 2021; 13(6): 1023. https://doi.org/10.3390/v13061023
  12. Zainutdinov S.S., Tikunov A.Y., Matveeva O.V., Netesov S.V., Kochneva G.V. Complete genome sequence of the oncolytic Sendai virus strain Moscow. Genome Announc. 2016; 4(4): e00818–16. https://doi.org/10.1128/genomea.00818-16
  13. Kochneva G.V., Grazhdantseva A.A., Sivolobova G.F., Zaynutdinov S.S. A set of recombinant plasmid DNA for obtaining recombinant Sendai viruses strain Moscow (variants). Patent RF № 2787724; 2023. (in Russian)
  14. Addgene. T7opt in pCAGGS. Available at: https://www.addgene.org/65974
  15. NovoPro. pCDH-EF1a-MCS-IRES-zeo vector map and sequence. Available at: https://www.novoprolabs.com/vector/Vgm4tkma
  16. Merkuleva I.A., Shcherbakov D.N., Borgoyakova M.B., Shanshin D.V., Rudometov A.P., Karpenko L.I., et al. Comparative immunogenicity of the recombinant receptor-binding domain of protein S SARS-CoV-2 obtained in prokaryotic and mammalian expression systems. Vaccines (Basel). 2022; 10(1): 96. https://doi.org/10.3390/vaccines10010096
  17. Tatsumoto N., Miyauchi T., Arditi M., Yamashita M. Quantification of infectious Sendai virus using plaque assay. Bio Protoc. 2018; 8(21): e3068. https://doi.org/10.21769/bioprotoc.3068
  18. Shipovalov A.V., Kudrov G.A., Tomilov A.A., Bodnev S.A., Boldyrev N.D., Ovchinnikova A.S., et al. Pathogenicity of the SARS-COV-2 virus variants of concern for the Syrian golden hamster. Problemy osobo opasnykh infektsiy. 2022; (3): 164–9. https://doi.org/10.21055/0370-1069-2022-3-164-169 https://www.elibrary.ru/mirlbr (in Russian)
  19. Shipovalov A.V., Kudrov G.A., Tomilov A.A., Bodnev S.A., Boldyrev N.D., Ovchinnikova A.S., et al. Susceptibility to SARS-CoV-2 virus variants of concern in mouse models. Problemy osobo opasnykh infektsiy. 2022; (1): 148–55. https://doi.org/10.21055/0370-1069-2022-1-148-155 https://www.elibrary.ru/vgamvf (in Russian)
  20. Matveeva O.V., Kochneva G.V., Netesov S.V., Onikienko S.B., Chumakov P.M. Mechanisms of oncolysis by paramyxovirus Sendai. Acta Naturae. 2015; 7(2): 6–16.
  21. Merkul’eva Yu.A., Shcherbakov D.N., Belen’kaya S.V., Isaeva A.A., Nesmeyanova V.S., Shan’shin D.V., et al. Integrative plasmid vector pVEAL2-S-RBD providing expression and secretion of the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 coronavirus in mammalian cells, recombinant strain of the CHO-R1-RBD cell line and recombinant SARS-CoV-2 RBD protein produced by the specified strain of the cell line CHO-K1-RBD. Patent RF № 2752858; 2021.
  22. Merkuleva I.A., Shcherbakov D.N., Borgoyakova M.B., Isaeva A.A., Nesmeyanova V.S., Volkova N.V., et al. Are hamsters a suitable model for evaluating the immunogenicity of RBD-based anti-COVID-19 subunit vaccines? Viruses. 2022; 14(5): 1060. https://doi.org/10.3390/v14051060
  23. Ilinykh P.A., Periasamy S., Huang K., Kuzmina N.A., Ramanathan P., Meyer M.N., et al. A single intranasal dose of human parainfluenza virus type 3-vectored vaccine induces effective antibody and memory T cell response in the lungs and protects hamsters against SARS-CoV-2. NPJ Vaccines. 2022; 7(1): 47. https://doi.org/10.1038/s41541-022-00471-3
  24. Castro J.T., Fumagalli M.J., Hojo-Souza N.S., Azevedo P., Salazar N., Rattis B., et al. Neutralizing antibody – independent immunity to SARS-CoV-2 in hamsters and hACE-2 transgenic mice immunized with a RBD/nucleocapsid fusion protein. BioRxiv. 2021. Preprint. https://doi.org/10.1101/2021.09.16.460663

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme for constructing the recombinant Sen-RBDdelta(M) variant of the Sendai virus strain Moscow with the introduction of the RBDdelta transgene between the P and M genes. Synthesis of genomic RNA of recombinant Sendai virus strains is carried out from plasmid DNA under the control of T7 phage polymerase (indicated by the arrow). рT7 – promoter; TT7 – T7 polymerase terminator; rib – ribozyme.

Download (121KB)
3. Fig. 2. Western blot analysis of RBDdelta expression by recombinant Sen-RBDdelta(M) virus: a, c – in allantoic fluid of 11-day-old chicken embryos; b – in culture medium of LLC-MK2 cells. Polyclonal blood serum of a mouse immunized by RBDdelta, dilution 1 : 500 (a, b) or blood serum of vaccinated convalescent COVID-19, dilution 1 : 200 (c) was used as primary antibodies. M – molecular weight control; 1 – negative control of the allantoic fluid of uninfected chicken embryos (a, c) or the culture medium of uninfected LLC-MK2 cells (b); 2 – positive control of RBD (200 ng, 35 kDa) expressed in CHO-K1 cells; 3 – empty track; 4 – allantoic fluid of chicken embryos infected with Sen-RBDdelta(M), 15 µl (a, c), or culture medium of cells infected with Sen-RBDdelta(M) (b).

Download (57KB)
4. Fig. 3. Clinical disease in hamsters after intranasal infection with SARS-CoV-2 delta strain: a – dynamics of weight change, points are median values, vertical lines are 95% confidence intervals; b – viral load (copies/ml) in nasal cavity flushes; c – viral load (copies/mg) in homogenates of nasal cavity and lung tissues, dots are individual values, horizontal lines are medians, vertical lines are 95% confidence intervals. p-values are indicated for statistically significant differences (p < 0.05) in the Mann–Whitney U-test.

Download (235KB)
5. Fig. 4. Histological section of a Syrian hamster lung from the control (a) and the vaccinated group (b).

Download (1MB)
6. Fig. 5. Total and neutralizing IgG antibodies against the SARS-CoV-2 delta strain in the sera of immunized BALB/c mice: a – optical density value (OD450) determined by ELISA; dots – individual values, histogram tops – medians, vertical lines – 95% confidence intervals; b – neutralization titers (NT50), points – individual values, histogram tops – geometric means, vertical lines – standard deviations; horizontal dotted line – threshold value (NT50 < 1 : 10). p-values are indicated for statistically significant differences (p < 0.05) in Dunn’s Multiple Comparison Test.

Download (126KB)
7. Fig. 6. Viral load (copies/mg) in nasal cavity and lung tissue homogenates of BALB/c mice on day 5 after infection with Gamma strain SARS-CoV-2. In the diagram, the points are individual values, the horizontal lines are medians, and the vertical lines are 95% confidence intervals. P-values are indicated for statistically significant differences (p < 0.05) in Dunn’s Multiple Comparison Test.

Download (81KB)

Copyright (c) 2023 Kudrov G.A., Zainutdinov S.S., Grazhdantseva A.A., Shipovalov A.V., Sivolobova G.F., Semenova A.V., Merkuleva I.A., Shcherbakov D.N., Taranov O.S., Zaykovskaya A.V., Shulgina I.S., Pyankov O.V., Kochneva G.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».