Study of the safety and immunogenicity of VLP-based vaccine for the prevention of rotavirus infection in neonatal minipig model

封面图片

如何引用文章

全文:

详细

Introduction. In Russia, almost half of the cases of acute intestinal infections of established etiology in 2022 are due to rotavirus infection (RVI). There is no specific treatment for rotavirus gastroenteritis. There is a need to develop modern, effective and safe vaccines to combat rotavirus infection that are not capable of multiplying (replicating) in the body of the vaccinated person. A promising approach is to create vaccines based on virus-like particles (VLPs).

Objective. Study of the safety and immunogenicity of a vaccine against rotavirus infection based on virus-like particles of human rotavirus A in newborn minipigs with multiple intramuscular administration.

Materials and methods. Newborn minipigs were used as an animal model in this study. The safety of the tested vaccine was assessed based on thermometry data, clinical examination, body weight gain, clinical and biochemical blood parameters, as well as necropsy and histological examination. When studying the immunogenic properties of the Gam-VLP-rota vaccine in doses of 30 and 120 µg, the cellular, humoral and secretory immune response was studied.

Results. The results of assessing the general condition of animals during the immunization period, data from clinical, laboratory and pathomorphological studies indicate the safety of the vaccine against human rotavirus infection based on VLP (Gam-VLP-rota) when administered three times intramuscularly. Good local tolerance of the tested vaccine was demonstrated. The results of the assessment of humoral immunity indicate the formation of a stable immune response after three-time immunization with Gam-VLP-rota, stimulation of the production of antigen-specific IgG antibodies and their functional activity to neutralize human rotavirus A. It was shown that following the triple immunization with the minimum tested concentration of 30 µg/dose, animals developed a cell-mediated immune response. The results of the IgA titer in blood serum and intestinal lavages indicate the formation of both a systemic immunological response and the formation of specific secretory immunity to human rotavirus A.

Conclusion. Thus, three-time intramuscular immunization of minipigs with the Gam-VLP-rota vaccine forms stable protective humoral and cellular immunity in experimental animals. Evaluated vaccine is safe and has good local tolerability.

作者简介

Ludmila Kostina

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

编辑信件的主要联系方式.
Email: lvkostina@mail.ru
ORCID iD: 0000-0002-9556-1454

PhD, Senior Researcher at the Laboratory of Molecular Diagnostics, National Research Center for Epidemiology and Microbiology

俄罗斯联邦, 123098, Moscow

Ilya Filatov

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Email: filat69rus@yandex.ru
ORCID iD: 0000-0001-5274-224X

Junior Researcher, Laboratory of Molecular Diagnostics

俄罗斯联邦, 123098, Moscow

Olesya Eliseeva

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Email: olesenka80@mail.ru
ORCID iD: 0000-0002-0723-9749

PhD, Senior Researcher at the Laboratory of Molecular Diagnostics

俄罗斯联邦, 123098, Moscow

Oleg Latyshev

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Email: oleglat80@mail.ru
ORCID iD: 0000-0002-5757-3809

PhD, Head Laboratory of Immunology

俄罗斯联邦, 123098, Moscow

Yana Chernoryzh

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Email: revengeful_w@mail.ru
ORCID iD: 0000-0001-9848-8515

PhD, Researcher

俄罗斯联邦, 123098, Moscow

Kirill Yurlov

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Email: kir34292@yandex.ru
ORCID iD: 0000-0002-4694-2445

Researcher

俄罗斯联邦, 123098, Moscow

Ekaterina Lesnova

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Email: wolf252006@yandex.ru
ORCID iD: 0000-0002-2801-6843

Researcher

俄罗斯联邦, 123098, Moscow

Kizkhalum Khametova

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Email: kizkhalum@yandex.ru
ORCID iD: 0000-0002-8461-600X

PhD, Researcher

俄罗斯联邦, 123098, Moscow

Stanislav Cherepushkin

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Email: cherepushkin1@gmail.com
ORCID iD: 0000-0002-1734-5369

Researcher at the Laboratory of Molecular Diagnostics

俄罗斯联邦, 123098, Moscow

Tatyana Savochkina

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Email: tasavochkina@yandex.ru
ORCID iD: 0000-0003-4366-8476

Researcher, Laboratory of Molecular Diagnostics

俄罗斯联邦, 123098, Moscow

Valery Tsibezov

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Email: tsibezov@yandex.ru
ORCID iD: 0000-0003-2150-5764

PhD, Leading Researcher, Laboratory of Specific Prevention Products

俄罗斯联邦, 123098, Moscow

Kirill Kryshen

RMC «HOME OF PHARMACY» JSC

Email: kryshen.kl@doclinika.ru
ORCID iD: 0000-0003-1451-7716

PhD, head of specific toxicity and microbiology department

俄罗斯联邦, 188663, St. Petersburg

Liubov Alekseeva

RMC «HOME OF PHARMACY» JSC

Email: alekseeva.li@doclinika.ru
ORCID iD: 0000-0002-6510-9897

Junior Researcher, Department of Specific Toxicology and Pharmacodynamics, study director

俄罗斯联邦, 188663, St. Petersburg

Olga Zaykova

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Email: zaykova_o_n@mail.ru
ORCID iD: 0000-0003-4708-2069

PhD, senior researcher, Laboratory of Molecular Diagnostics, researcher in Diagnostic and Prevention

俄罗斯联邦, 123098, Moscow

Tatyana Grebennikova

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation

Email: t_grebennikova@mail.ru
ORCID iD: 0000-0002-6141-9361

Dr Sci. (Biol.), Professor, Corresponding Member RAS, Head Laboratory of Molecular Diagnostics Head of the Testing Center, Deputy Director for Science

俄罗斯联邦, 123098, Moscow

参考

  1. Hallowell B.D., Chavers T., Parashar U., Tate J.E. Global estimates of rotavirus hospitalizations among children below 5 years in 2019 and current and projected impacts of rotavirus vaccination. J. Pediatric Infect. Dis. Soc. 2022; 11(4): 149–58. https://doi.org/10.1093/jpids/piab114
  2. Troeger C., Khalil I.A., Rao P.C., Cao S., Blacker B.F., Ahmed T., et. al. Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatr. 2018; 172(10): 958–65. https://doi.org/10.1001/jamapediatrics.2018.1960
  3. State report «On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2022». Moscow; 2023. (in Russian)
  4. Omatola C.A., Olaniran A.O. Rotaviruses: from pathogenesis to disease control – a critical review. Viruses. 2022; 14(5): 875. https://doi.org/10.3390/v14050875
  5. Vetter V., Gardner R.C., Debrus S., Benninghoff B., Pereira P. Established and new rotavirus vaccines: a comprehensive review for healthcare professionals. Hum. Vaccin. Immunother. 2022; 18(1): 1870395. https://doi.org/10.1080/21645515.2020.1870395
  6. Ivashechkin A.A., Yuzhakov A.G., Grebennikova T.V., Yuzhakova K.A., Kulikova N.Y., Kisteneva L.B., et al. Genetic diversity of group A rotaviruses in Moscow in 2018-2019. Arch. Virol. 2020; 165(3): 691–702. https://doi.org/10.1007/s00705-020-04534-5
  7. Yuzhakov A., Yuzhakova K., Kulikova N., Kisteneva L., Cherepushkin S., Smetanina S., et al. Prevalence and genetic diversity of group a rotavirus genotypes in Moscow (2019-2020). Pathogens. 2021; 10(6): 674. https://doi.org/10.3390/pathogens10060674
  8. Namazova-Baranova L.S., Fedoseenko M.V., Kalyuzhnaya T.A., Shakhtakhtinskaya F.Ch., Tolstova S.V., Sel’vyan A.M. New possibilities of preventive immunization for rotavirus infection in Russian Federation. Overview of the innovative rotavirus vaccine profile. Pediatricheskaya farmakologiya. 2022; 19(6): 492–502. https://doi.org/10.15690/pf.v19i6.2489 https://elibrary.ru/zrbuqq (in Russian)
  9. Rotavirus vaccines: WHO position paper – July 2021. Wkly Epidemiol. Rec. 2021; 96(‎28)‎: 301–20.
  10. Skansberg A., Sauer M., Tan M., Santosham M., Jennings M.C. Product review of the rotavirus vaccines ROTASIIL, ROTAVAC, and Rotavin-M1. Hum. Vaccin. Immunother. 2021; 17(4): 1223–34. https://doi.org/10.1080/21645515.2020.1804245
  11. Cherepushkin S.A., Tsibezov V.V., Yuzhakov A.G., Latyshev O.E., Alekseev K.P., Altaeva E.G., et al. Synthesis and characterization of human rotavirus A (Reoviridae: Sedoreovirinae: Rotavirus: Rotavirus A) virus-like particles. Voprosy virusologii. 2021; 66(1): 55–64. https://doi.org/10.36233/0507-4088-27 https://elibrary.ru/eersag (in Russian)
  12. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes; 2010.
  13. Latyshev O.E., Eliseeva O.V., Kostina L.V., Alekseev K.P., Khametova K.M., Altaeva E.G., et al. Assessment of immunogenic activity of the cloned human rotavirus A WA strain. Voprosy virusologii. 2019; 64(4): 156–64. https://doi.org/10.36233/0507-4088-2019-64-4-156-164 https://elibrary.ru/sckbyy (in Russian)
  14. Filatov I.E., Tsibezov V.V., Balandina M.V., Norkina S.N., Latyshev O.E., Eliseeva O.V., et al. Virus-like particles based on rotavarus A recombinant VP2/VP6 proteins for assessment the antibody immune response by ELISA. Voprosy virusologii. 2023; 68(2): 161–71. https://doi.org/10.36233/0507-4088-169 https://elibrary.ru/aywqhn (in Russian)
  15. Stepanova O.I., Karkishchenko V.N., Klesov R.A., Stankova N.V., Agel’dinov R.A., Savina M.A. Method for separating lymphoid cells (mononuclear cells) from the blood of mini-pigs. Biomeditsina. 2020; 16(3): 54–9. https://doi.org/10.33647/2074-5982-16-3-54-59 https://elibrary.ru/ggmvjo (in Russian)
  16. Estes M.K., Crawford S.E., Penaranda M.E., Petrie B.L., Burns J.W., Chan W.K., et al. Synthesis and immunogenicity of the rotavirus major capsid antigen using a baculovirus expression system. J. Virol. 1987; 61(5): 1488–94. https://doi.org/10.1128/jvi.61.5.1488-1494.1987
  17. Li T., Lin H., Zhang Y., Li M., Wang D., Che Y., et al. Improved characteristics and protective efficacy in an animal model of E. coli-derived recombinant double-layered rotavirus virus-like particles. Vaccine. 2014; 32(17): 1921–31. https://doi.org/10.1016/j.vaccine.2014.01.093
  18. Rodríguez-Limas W.A., Tyo K.E., Nielsen J., Ramírez O.T., Palomares L.A. Molecular and process design for rotavirus-like particle production in Saccharomyces cerevisiae. Microb. Cell. Fact. 2011; 10: 33. https://doi.org/10.1186/1475-2859-10-33
  19. Kurokawa N., Lavoie P.O., D’Aoust M.A., Couture M.M., Dargis M., Trépanier S., et al. Development and characterization of a plant-derived rotavirus-like particle vaccine. Vaccine. 2021; 39(35): 4979–87. https://doi.org/10.1016/j.vaccine.2021.07.039
  20. Molinari P., Peralta A., Taboga O. Production of rotavirus-like particles in Spodoptera frugiperda larvae. J. Virol. Methods. 2008; 147(2): 364–7. https://doi.org/10.1016/j.jviromet.2007.09.002
  21. Lee J.M., Chung H.Y., Kim K.I., Yoo K.H., Hwang-Bo J., Chung I.S., et al. Synthesis of double-layered rotavirus-like particles using internal ribosome entry site vector system in stably-transformed Drosophila melanogaster. Biotechnol. Lett. 2011; 33(1): 41–6. https://doi.org/10.1007/s10529-010-0390-x
  22. Laura A., Palomares O.T.R. Challenges for the production of virus-like particles in insect cells: the case of rotavirus-like particles. Biochem. Eng. J. 2009; 45(3): 158–67. https://doi.org/10.1016/j.bej.2009.02.006
  23. Changotra H., Vij A. Rotavirus virus-like particles (RV-VLPs) vaccines: An update. Rev. Med. Virol. 2017; 27(6). https://doi.org/10.1002/rmv.1954
  24. Istrate C., Hinkula J., Charpilienne A., Poncet D., Cohen J., Svensson L., et al. Parenteral administration of RF 8-2/6/7 rotavirus-like particles in a one-dose regimen induce protective immunity in mice. Vaccine. 2008; 26(35): 4594–601. https://doi.org/10.1016/j.vaccine.2008.05.089
  25. Azevedo M., Vlasova A., Saif L. Human rotavirus virus-like particle vaccines evaluated in a neonatal gnotobiotic pig model of human rotavirus disease. Expert Rev. Vaccines. 2013; 12(2): 169–81. https://doi.org/10.1586/erv.13.3
  26. El-Attar L., Oliver S.L., Mackie A., Charpilienne A., Poncet D., Cohen J., et al. Comparison of the efficacy of rotavirus VLP vaccines to a live homologous rotavirus vaccine in a pig model of rotavirus disease. Vaccine. 2009; 27(24): 3201–8. https://doi.org/10.1016/j.vaccine.2009.03.043
  27. Kurokawa N., Robinson M.K., Bernard C., Kawaguchi Y., Koujin Y., Koen A., et al. Safety and immunogenicity of a plant-derived rotavirus-like particle vaccine in adults, toddlers and infants. Vaccine. 2021; 39(39): 5513–23. https://doi.org/10.1016/j.vaccine.2021.08.052

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kostina L.V., Filatov I.E., Eliseeva O.V., Latyshev O.E., Chernoryzh Y.Y., Yurlov K.I., Lesnova E.I., Khametova K.M., Cherepushkin S.A., Savochkina T.E., Tsibezov V.V., Kryshen K.L., Alekseeva L.I., Zaykova O.N., Grebennikova T.V., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».