Амплификационная панель NGS для секвенирования ДНК вируса гепатита В (Hepadnaviridae: Orthohepadnavirus)

Обложка

Цитировать

Полный текст

Аннотация

Введение. Гепатит В является актуальной проблемой общественного здравоохранения во всем мире. На клиническое течение заболевания, особенно на его склонность к хронизации инфекции и развитию устойчивости к терапии, значительное влияние оказывают генотип и специфические мутации вируса гепатита В (ВГВ). С учетом сохраняющейся важности эпидемиологического контроля и профилактики заболевания, существует необходимость в простом, высокочувствительном и надежном методе секвенирования полного генома ВГВ.

Цель работы. Создание и апробация амплификационной панели для полногеномного секвенирования ВГВ.

Материалы и методы. В настоящей работе мы представляем амплификационную панель NGS, предназначенную для секвенирования генома ВГВ на платформе Illumina. Панель, состоящая из 54 праймеров, разделенных на 2 пула и амплифицирующих перекрывающиеся участки генома ВГВ длиной до 300 п.н., была апробирована на 246 образцах ДНК ВГВ, выделенных из крови.

Результаты. Исследуемая выборка представляла собой широкое генотипическое разнообразие вируса, с выраженным преобладанием генотипа, характерного для Московского региона: 216 образцов были определены как генотип D, 27 – как генотип A, 2 – генотип B и 1 – генотип E. Пять образцов содержали по меньшей мере одну мутацию, связанную с устойчивостью к противовирусной терапии, в 23 образцах была найдена по меньшей мере одна мутация, связанная с ускользанием от поствакцинального ответа.

Заключение. В работе детально изложены этапы проведения полногеномного секвенирования ВГВ, приведены лабораторный протокол, нуклеотидные последовательности используемых праймеров и подход к анализу полученных данных. На примере выборки клинических образцов показана состоятельность применяемой панели. Панель для секвенирования ВГВ обладает большим потенциалом для использования в научных исследованиях, эпидемиологическом мониторинге и развитии методов персонализированной медицины.

Об авторах

Михаил Дамирович Чанышев

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора

Автор, ответственный за переписку.
Email: chanishq@gmail.com
ORCID iD: 0000-0002-6943-2915

канд. биол. наук, научный сотрудник Лаборатории геномных исследований ФБУН ЦНИИ Эпидемиологии Роспотребнадзора

Россия, 111123, г. Москва

Наталья Викторовна Власенко

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора

Email: vlasenko@cmd.su
ORCID iD: 0000-0002-2388-1483

научный сотрудник Лаборатории вирусных гепатитов ФБУН ЦНИИ Эпидемиологии Роспотребнадзора

Россия, 111123, г. Москва

Герман Викторович Роев

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора; Московский физико-технический институт

Email: roevherman@gmail.com
ORCID iD: 0000-0002-2353-5222

bioinformatician of the Laboratory for genomic research, Central Research Institute for Epidemiology of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing

Россия, 111123, г. Москва; 141701, г. Долгопрудный

Иван Андреевич Котов

Московский физико-технический институт

Email: ivan.kotov@phystech.edu
ORCID iD: 0000-0003-2416-5689

аспирант ФБМФ МФТИ

Россия, 141701, г. Долгопрудный

Альбина Григорьевна Глущенко

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора; Московский физико-технический институт

Email: albinagluschenko@gmail.com
ORCID iD: 0009-0002-8851-8703

лаборант Лаборатории геномных исследований ФБУН ЦНИИ Эпидемиологии Роспотребнадзора

Россия, 111123, г. Москва; 141701, г. Долгопрудный

Вера Васильевна Макашова

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора

Email: veramakashova@yandex.ru
ORCID iD: 0000-0002-0982-3527

доктор медицинских наук, профессор, ведущий научный сотрудник клинического отдела инфекционной патологии ФБУН ЦНИИ Эпидемиологии Роспотребнадзора

Россия, 111123, г. Москва

Камиль Фаридович Хафизов

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора

Email: kkhafizov@gmail.com
ORCID iD: 0000-0001-5524-0296

канд. биол. наук, заведующий Лабораторией геномных исследований ФБУН ЦНИИ Эпидемиологии Роспотребнадзора

Россия, 111123, г. Москва

Василий Геннадьевич Акимкин

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора

Email: vgakimkin@yandex.ru
ORCID iD: 0000-0003-4228-9044

академик РАН, доктор медицинских наук, профессор, директор ФБУН ЦНИИ Эпидемиологии Роспотребнадзора

Россия, 111123, г. Москва

Список литературы

  1. WHO. Hepatitis B; 2022. Available at: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b
  2. Belaiba Z., Ayouni K., Gdoura M., Kammoun Rebai W., Touzi H., Sadraoui A., et al. Whole genome analysis of hepatitis B virus before and during long-term therapy in chronic infected patients: Molecular characterization, impact on treatment and liver disease progression. Front. Microbiol. 2022; 13: 1020147. https://doi.org/10.3389/fmicb.2022.1020147
  3. Kramvis A. Genotypes and genetic variability of hepatitis B virus. Intervirology. 2014; 57(3-4): 141–50. https://doi.org/10.1159/000360947
  4. Tran T.T., Trinh T.N., Abe K. New complex recombinant genotype of hepatitis B virus identified in Vietnam. J. Virol. 2008; 82(11): 5657–63. https://doi.org/10.1128/JVI.02556-07
  5. Tatematsu K., Tanaka Y., Kurbanov F., Sugauchi F., Mano S., Maeshiro T., et al. A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J. Virol. 2009; 83(20): 10538–47. https://doi.org/10.1128/JVI.00462-09
  6. Velkov S., Ott J.J., Protzer U., Michler T. The global hepatitis B virus genotype distribution approximated from available genotyping data. Genes (Basel). 2018; 9(10): 495. https://doi.org/10.3390/genes9100495
  7. Sunbul M. Hepatitis B virus genotypes: global distribution and clinical importance. World J. Gastroenterol. 2014; 20(18): 5427–34. https://doi.org/10.3748/wjg.v20.i18.5427
  8. Delaney W.E. 4th., Yang H., Westland C.E., Das K., Arnold E., Gibbs C.S., et al. The hepatitis B virus polymerase mutation rtV173L is selected during lamivudine therapy and enhances viral replication in vitro. J. Virol. 2003; 77(21): 11833–41. https://doi.org/10.1128/jvi.77.21.11833-11841.2003
  9. Zhang X., Chen X., Wei M., Zhang C., Xu T., Liu L., et al. Potential resistant mutations within HBV reverse transcriptase sequences in nucleos(t)ide analogues-experienced patients with hepatitis B virus infection. Sci. Rep. 2019; 9(1): 8078. https://doi.org/10.1038/s41598-019-44604-6
  10. Vincenti D., Piselli P., Solmone M., D’Offizi G., Capobianchi M.R., Menzo S. Evolutionary trends of resistance mutational patterns of HBV reverse transcriptase over years (2002–2012) of different treatment regimens: The legacy of lamivudine/adefovir combination treatment. Antiviral. Res. 2017; 143: 62–8. https://doi.org/10.1016/j.antiviral.2017.03.008
  11. Araujo N.M., Teles S.A., Spitz N. Comprehensive analysis of clinically significant hepatitis B virus mutations in relation to genotype, subgenotype and geographic region. Front. Microbiol. 2020; 11: 616023. https://doi.org/10.3389/fmicb.2020.616023
  12. Liu Y., Wang C., Zhong Y., Li X., Dai J., Ren X., et al. Genotypic resistance profile of hepatitis B virus (HBV) in a large cohort of nucleos(t)ide analogue-experienced Chinese patients with chronic HBV infection. J. Viral. Hepat. 2011; 18(4): e29–39. https://doi.org/10.1111/j.1365-2893.2010.01360.x
  13. Carman W.F. The clinical significance of surface antigen variants of hepatitis B virus. J. Viral. Hepat. 1997; 4(Suppl. 1): 11–20. https://doi.org/10.1111/j.1365-2893.1997.tb00155.x
  14. Mokaya J., Vasylyeva T.I., Barnes E., Ansari M.A., Pybus O.G., Matthews P.C. Global prevalence and phylogeny of hepatitis B virus (HBV) drug and vaccine resistance mutations. J. Viral. Hepat. 2021; 28(8): 1110–20. https://doi.org/10.1111/jvh.13525
  15. Ababneh N.A., Sallam M., Kaddomi D., Attili A.M., Bsisu I., Khamees N., et al. Patterns of hepatitis B virus S gene escape mutants and reverse transcriptase mutations among genotype D isolates in Jordan. PeerJ. 2019; 7: e6583. https://doi.org/10.7717/peerj.6583
  16. Lazarevic I., Banko A., Miljanovic D., Cupic M. Immune-escape hepatitis B virus mutations associated with viral reactivation upon immunosuppression. Viruses. 2019; 11(9): 778. https://doi.org/10.3390/v11090778
  17. Avellón A., Echevarria J.M. Frequency of hepatitis B virus ‘a’ determinant variants in unselected Spanish chronic carriers. J. Med. Virol. 2006; 78(1): 24–36. https://doi.org/10.1002/jmv.20516
  18. Ma Q., Wang Y. Comprehensive analysis of the prevalence of hepatitis B virus escape mutations in the major hydrophilic region of surface antigen. J. Med. Virol. 2012; 84(2): 198–206. https://doi.org/10.1002/jmv.23183
  19. Araújo S.D.R., Malheiros A.P., Sarmento V.P., Nunes H.M., Freitas P.E.B. Molecular investigation of occult hepatitis B virus infection in a reference center in Northern Brazil. Braz. J. Infect. Dis. 2022; 26(3): 102367. https://doi.org/10.1016/j.bjid.2022.102367
  20. Zhou X., Liu D., Li Z., Zhao J., Cai S., Cao G. The mechanism of hepatitis B virus X gene in promoting hepatocellular carcinoma. J. Cancer Sci. Clin. Ther. 2022; 6(2): 222–33. https://doi.org/10.26502/jcsct.5079158
  21. Abdou Chekaraou M., Brichler S., Mansour W., Le Gal F., Garba A., Dény P., et al. A novel hepatitis B virus (HBV) subgenotype D (D8) strain, resulting from recombination between genotypes D and E, is circulating in Niger along with HBV/E strains. J. Gen. Virol. 2010; 91(Pt. 6): 1609–20. https://doi.org/10.1099/vir.0.018127-0
  22. Останкова Ю.В., Семенов А.В., Зуева Е.Б., Тотолян А.А. Первые случаи выявления вируса гепатита B субгенотипа D4 у больных хроническим, острым и скрытым вирусным гепатитом B в Российской Федерации. Молекулярная генетика, микробиология и вирусология. 2020; 38(4): 180–7. https://doi.org/10.17116/molgen202038041180 https://elibrary.ru/cuboiu
  23. Liu H., Shen L., Zhang S., Wang F., Zhang G., Yin Z., et al. Complete genome analysis of hepatitis B virus in Qinghai-Tibet plateau: the geographical distribution, genetic diversity, and co-existence of HBsAg and anti-HBs antibodies. Virol. J. 2020; 17(1): 75. https://doi.org/10.1186/s12985-020-01350-w
  24. Chen Q.Y., Jia H.H., Wang X.Y., Shi Y.L., Zhang L.J., Hu L.P., et al. Analysis of entire hepatitis B virus genomes reveals reversion of mutations to wild type in natural infection, a 15 year follow-up study. Infect. Genet. Evol. 2022; 97: 105184. https://doi.org/10.1016/j.meegid.2021.105184
  25. Lin S.R., Yang T.Y., Peng C.Y., Lin Y.Y., Dai C.Y., Wang H.Y., et al. Whole genome deep sequencing analysis of viral quasispecies diversity and evolution in HBeAg seroconverters. JHEP Rep. 2021; 3(3): 100254. https://doi.org/10.1016/j.jhepr.2021.100254
  26. HBVdb. Available at: https://hbvdb.lyon.inserm.fr/HBVdb/HBVdbIndex
  27. Kotov I., Saenko V., Borisova N., Kolesnikov A., Kondrasheva L., Tivanova E., et al. Effective approaches to study the genetic variability of SARS-CoV-2. Viruses. 2022; 14(9): 1855. https://doi.org/10.3390/v14091855
  28. Johnston A.D., Lu J., Ru K.L., Korbie D., Trau M. PrimerROC: accurate condition-independent dimer prediction using ROC analysis. Sci. Rep. 2019; 9(1): 209. https://doi.org/10.1038/s41598-018-36612-9
  29. Hebeler-Barbosa F., Wolf I.R., Valente G.T., Mello F.C.D.A., Lampe E., Pardini M.I.M.C., et al. A new method for next-generation sequencing of the full hepatitis B virus genome from a clinical specimen: impact for virus genotyping. Microorganisms. 2020; 8(9): 1391. https://doi.org/10.3390/microorganisms8091391
  30. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013; 30(4): 772–80. https://doi.org/10.1093/molbev/mst010
  31. Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021; 38(7): 3022–7. https://doi.org/10.1093/molbev/msab120
  32. Huerta-Cepas J., Serra F., Bork P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 2016; 33(6): 1635–8. https://doi.org/10.1093/molbev/msw046
  33. Al-Qahtani A.A., Al-Anazi M.R., Nazir N., Abdo A.A., Sanai F.M., Al-Hamoudi W.K., et al. The correlation between hepatitis B virus precore/core mutations and the progression of severe liver disease. Front. Cell Infect. Microbiol. 2018; 8: 355. https://doi.org/10.3389/fcimb.2018.00355
  34. Klushkina V.V., Kyuregyan K.K., Kozhanova T.V., Popova O.E., Dubrovina P.G., Isaeva O.V., et al. Impact of universal hepatitis В vaccination on prevalence, infection-associated morbidity and mortality, and circulation of immune escape variants in Russia. PLoS One. 2016; 11(6): e0157161. https://doi.org/10.1371/journal.pone.0157161
  35. Manuylov V., Chulanov V., Bezuglova L., Chub E., Karlsen A., Kyuregyan K., et al. Genetic diversity and possible origins of the hepatitis B virus in Siberian natives. Viruses. 2022; 14(11): 2465. https://doi.org/10.3390/v14112465

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Приложение
Скачать (247KB)
3. Рис. 1. Log10 глубины прочтения для каждого ампликона, нормированной на общее количество прочтений на образец. Весь геном ВГВ был поделен на 20 ампликонов (HBV-1–HBV-20).

Скачать (369KB)
4. Рис. 2. Покрытие 246 образцов. Область генома считали прочитанной при глубине не менее 10 прочтений. Образцы отсортированы по проценту покрытия. Генотипы выделены цветами в соответствии со статьей S. Velkov и соавт. [6].

Скачать (381KB)
5. Рис. 3. Встречаемость различных генотипов ВГВ в Московской области России. Генотипы выделены цветами в соответствии со статьей S. Velkov и др. [6].

Скачать (63KB)
6. Рис. 4. Филогенетическое дерево секвенированных образцов ВГВ. Дерево было построено в MEGA v11.0.11 с использованием алгоритма присоединения соседей и укоренено при помощи метода средней точки. Визуализация выполнена с использованием библиотеки ete3. Генотипы A, B, D, E отмечены соответственно красным, синим, фиолетовым и оранжевым цветами. Референсные последовательности помечены черным цветом, а секвенированные в данной работе – желтым.

Скачать (332KB)
7. Рис. 5. Встречаемость мутаций в RT-домене гена P, связанных с устойчивостью к противовирусной терапии, и мутаций в гене S, связанных с ускользанием от поствакцинального ответа. Серые поля представляют собой неопределенные области, белые – дикий тип, желтые – замены, не описанные в литературе, красные – мутации, описанные в литературе как мутации устойчивости к противовирусной терапии и мутации, ускользания от иммунитета. Представлено всего 33 образца, содержащих хотя бы одно отличие от дикого типа.

Скачать (215KB)

© Чанышев М.Д., Власенко Н.В., Роев Г.В., Котов И.А., Глущенко А.Г., Макашова В.В., Хафизов К.Ф., Акимкин В.Г., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».