Electrolytes, Zinc and Vitamin D3 in COVID-19 Patients with Cardiovascular Complications

Cover Page

Cite item

Full Text

Abstract

Introduction. COVID-19 is strongly linked to cardiovascular disease, with direct myocardial injury and systemic inflammation as common mechanisms. Pre-existing or infection-induced cardiovascular disease worsens the outcomes for COVID-19 patients.

Materials and methods. To estimate the serum electrolytes (Na+, K+, Ca++, Zn) and vitamin D3, the study depended on ichroma ii device for Vitamin D3 and Chemistry Analyzer for electrolytes in patient samples.

Results. A study was conducted on 192 individuals diagnosed with COVID-19, including 35 critical cases, 53 severe cases, 54 moderate cases, and 50 individuals in a control group. The age group with the highest prevalence of infection was between 50‒69 years, while the lowest prevalence was observed in those under 30 years. The study found significant decreases in calcium, potassium, sodium, zinc, and vitamin D3 levels among COVID-19 patients compared to the control group. Zinc and vitamin D3 levels showed a significant correlation with sex, with males experiencing a decline in zinc levels and females having lower vitamin D3 levels. The concentration of calcium, sodium, and zinc showed a negative correlation with age, with older patients having the lowest levels. COVID-19 patients with chronic cardiac issues and high blood pressure exhibited the lowest levels of these markers. The severity of the disease also had a detrimental impact on electrolyte levels, zinc, and vitamin D3, with critical cases showing the lowest levels. The complications such as heart failure were associated with lower levels of potassium, sodium, and zinc.

Conclusion. In conclusion, the study revealed significant associations between COVID-19 and decreased electrolyte levels, zinc, and vitamin D3. Sex and age were found to be correlated with these markers. Patients with chronic cardiac issues and high blood pressure exhibited the lowest levels of these markers. The severity of the disease was also linked to lower electrolyte levels, zinc, and vitamin D3. Complications such as heart failure were associated with decreased levels of potassium, sodium, and zinc.

About the authors

Ali Abdel-Moneim Mohammed-Hussain AlKhuzaie

College of Science, University of Thi-Qar; Ministry of Education, Directorate of Education

Email: Medicalresearch11@yahoo.com
ORCID iD: 0009-0009-4693-2579

Postgraduate Student, Lecturer, Department of Biology

Iraq, Thi-Qar; Thi-Qar

Enas Abdul Kareem Jabbar

Ministry of Education, Directorate of Education

Email: Enaskareemjj0@gmail.com
ORCID iD: 0000-0002-8327-5434

Dr., Professor, Lecturer

Iraq, Thi-Qar

Bushra Jabbar Albadry

University of Thi-Qar

Author for correspondence.
Email: bushra.jh.bio@sci.utq.edu.iq
ORCID iD: 0000-0002-5129-7700

Assistant Professor, Head Manager, Faculty of Nursing

Iraq, Thi-Qar

References

  1. Montezano A.C., Camargo L.L., Mary S., Neves K.B., Rios F.J., Stein R., et al. SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Sci. Rep. 2023; 13(1): 14086. DOI: https://doi.org/10.1038/s41598-023-41115-3
  2. Akshay P.S., Veena S.M., Teja K.B., Tomar S.J. Severe Acute Respiratory Syndrome associated Corona Virus [SARS-CoV]. In: Emerging Human Viral Diseases, Volume I: Respiratory and Haemorrhagic Fever. Singapore: Springer Nature Singapore; 2023: 157–87. DOI: https://doi.org/10.1007/978-981-99-2820-0_5
  3. Grubišić B., Švitek L., Ormanac K., Sabo D., Mihaljević I., Bilić-Ćurčić I., et al. Molecular mechanisms responsible for diabetogenic effects of COVID-19 infection – induction of autoimmune dysregulation and metabolic disturbances. Int. J. Mol. Sci. 2023; 24(14): 11576. DOI: https://doi.org/10.3390/ijms241411576
  4. Hadi H.S., Enayah S.H. Effects of COVID-19 infection on some pancreatic functions in diabetic patients at Thi-Qar province/Iraq. Univ. Thi-Qar J. Sci. 2022; 9(2): 66–74. DOI: https://doi.org/10.32792/utq/utjsci/v9i2.906
  5. Tyagi K., Rai P., Gautam A., Kaur H., Kapoor S., Suttee A., et al. Neurological manifestations of SARS-CoV-2: Complexity, mechanism and associated disorders. Eur. J. Med. Res. 2023; 28(1): 307. DOI: https://doi.org/10.1186/s40001-023-01293-2
  6. Alhawiti N.M., Alhawiti J.M., Alshalan S.D., Alotaibi B.A., Khobrani A.Y. Clinical outcomes of anticoagulant therapy in COVID-19 patients with pre-existing cardiovascular diseases: a systematic review. Infect. Drug Resist. 2023; 16: 3767–75. DOI: https://doi.org/10.2147/IDR.S410374
  7. Bilehjani E., Fakhari S., Farzin H., Tajlil A., Nader N.D. Diagnosis and treatment of cardiovascular manifestations of COVID-19: A narrative review. Acta Cardiol. 2024; 79(3): 267–73. DOI: https://doi.org/10.1080/00015385.2023.2246200
  8. Pannucci P., Jefferson S.R., Hampshire J., Cooper S.L., Hill S.J., Woolard J. COVID-19-Induced myocarditis: Pathophysiological roles of ACE2 and toll-like receptors. Int. J. Mol. Sci. 2023; 24(6): 5374. DOI: https://doi.org/10.3390/ijms24065374
  9. Chatterjee S., Nalla L.V., Sharma M., Sharma N., Singh A.A., Malim F.M., et al. Association of COVID-19 with comorbidities: an update. ACS Pharmacol. Transl. Sci. 2023; 6(3): 334–54. DOI: https://doi.org/10.1021/acsptsci.2c00181
  10. Alsaidan A.A., Al-Kuraishy H.M., Al-Gareeb A.I., Alexiou A., Papadakis M., Alsayed K.A., et al. The potential role of SARS-CoV-2 infection in acute coronary syndrome and type 2 myocardial infarction (T2MI): Intertwining spread. Immun. Inflamm. Dis. 2023; 11(3): e798. DOI: https://doi.org/10.1002/iid3.798
  11. Musa M. The Prevalence and the significance of the pulmonary bacterial super-infections among hospitalized COVID-19 patients: A scoping Review. Univ. Thi-Qar J. Sci. 2023; 10(1). DOI: https://doi.org/10.32792/utq/utjsci/v10i1.930
  12. McGuone D., Farrand N., Prizeman G., O’Brien F. COVID-19 outcomes in patients with pre-existing cardiovascular disease and risk factors: perspectives from a hospital in Ireland. Br. J. Card. Nurs. 2024; 19(1): 1–3. DOI: https://doi.org/10.12968/bjca.2023.0097
  13. Su Y.J., Kuo K.C., Wang T.W., Chang C.W. Gender-based differences in COVID-19. New Microbes New Infect. 2021; 42: 100905. DOI: https://doi.org/10.1016/j.nmni.2021.100905
  14. Al-Hijaj B., Al-rubaye A., Al-Hashim Z., Mohammed M., Habib O. A study on 696 COVID-19 cases in Basrah-Southern Iraq: severity and outcome indicators. Iraqi Natl J. Med. 2020; 2(3): 19–26. DOI: https://doi.org/10.37319/iqnjm.2.csi.3
  15. Mukherjee S, Pahan K. Is COVID-19 gender-sensitive? J. Neuroimmune Pharmacol. 2021; 16(1): 38–47. DOI: https://doi.org/10.1007/s11481-020-09974-z
  16. Pradhan A., Olsson P.E. Sex differences in severity and mortality from COVID-19: are males more vulnerable? Biol. Sex Differ. 2020; 11(1): 53. DOI: https://doi.org/10.1186/s13293-020-00330-7
  17. Achua J.K., Chu K.Y., Ibrahim E., Khodamoradi K., Delma K.S., Iakymenko O.A., et al. Histopathology, and ultrastructural findings of fatal COVID-19 infections on testis. World J. Mens Health. 2021; 39(1): 65. DOI: https://doi.org/10.5534/wjmh.200170
  18. White A. Men and COVID-19: the aftermath. Postgrad. Med. 2020; 132(Suppl. 4): 18–27. DOI: https://doi.org/10.1080/00325481.2020.1823760
  19. Mushtaq M.Z., Nasir N., Mahmood S.F., Khan S., Kanji A., Nasir A., et al. Older age, lack of vaccination and infection with variants other than Omicron associated with severity of COVID-19 and in-hospital mortality in Pakistan. medRxiv. 2023. Preprint. DOI: https://doi.org/10.1101/2023.01.30.23285170
  20. Davies N.G., Klepac P., Liu Y., Prem K., Jit M., Eggo R.M. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med. 2020; 26(8): 1205–11. DOI: https://doi.org/10.1038/s41591-020-0962-9
  21. Mueller A.L., McNamara M.S., Sinclair D.A. Why does COVID-19 disproportionately affect older people? Aging (Albany NY). 2020; 12(10): 9959–81. DOI: https://doi.org/10.18632/aging.103344
  22. Selvavinayagam S.T., Yong Y.K., Joseph N., Hemashree K., Tan H.Y., Zhang Y., et al. Low SARS-CoV-2 viral load among vaccinated individuals infected with Delta B. 1.617. 2 and Omicron BA. 1.1. 529 but not with Omicron BA. 1.1 and BA. 2 variants. Front. Public Health. 2022; 10: 1018399. DOI: https://doi.org/10.3389/fpubh.2022.1018399
  23. Elham A.S., Azam K., Azam J., Mostafa L., Nasrin B., Marzieh N. Serum vitamin D, calcium, and zinc levels in patients with COVID-19. Clin. Nutr. ESPEN. 2021; 43: 276–82. DOI: https://doi.org/10.1016/j.clnesp.2021.03.040
  24. Pecora F., Persico F., Argentiero A., Neglia C., Esposito S. The role of micronutrients in support of the immune response against viral infections. Nutrients. 2020; 12(10): 3198. DOI: https://doi.org/10.3390/nu12103198
  25. Ali A.A. Overview of the vital roles of macro minerals in the human body. J. Trace Elem. Min. 2023; 100076. DOI: https://doi.org/10.1016/j.jtemin.2023.100076
  26. Castro D., Sharma S. Hypokalemia. StatPearls. 2024; NBK482465.
  27. Cao L.L., Gaffney L.K., Marcus C. Hypokalemia-induced rhabdomyolysis in a child with autism affected by the COVID-19 pandemic. J. Dev. Behav. Pediatr. 2022; 43(5): e356–60. DOI: https://doi.org/10.1097/DBP.0000000000001035
  28. Gruber S., Beuschlein F. Hypokalemia and the prevalence of primary aldosteronism. Horm. Metab. Res. 2020; 52(06): 347–56. DOI: https://doi.org/10.1055/a-1134-4980
  29. Adrogué H.J., Tucker B.M., Madias N.E. Diagnosis and management of hyponatremia: a review. JAMA. 2022; 328(3): 280–91. DOI: https://doi.org/10.1001/jama.2022.11176
  30. Workeneh B.T., Meena P., Christ-Crain M., Rondon-Berrios H. Hyponatremia demystified: integrating physiology to shape clinical practice. Adv. Kidney Dis. Health. 2023; 30(2): 85–101. DOI: https://doi.org/10.1053/j.akdh.2022.11.004
  31. Wessels I., Rolles B., Slusarenko A.J., Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br. J. Nutr. 2022; 127(2): 214–32. https://doi.org/10.1017/S0007114521000738
  32. Joachimiak M.P. Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLoS Negl. Trop. Dis. 2021; 15(1): e0008895. DOI: https://doi.org/10.1371/journal.pntd.0008895
  33. Muthuvattur Pallath M., Ahirwar A.K., Chandra Tripathi S., Asia P., Sakarde A., Gopal N. COVID-19 and nutritional deficiency: a review of existing knowledge. Horm. Mol. Biol. Clin. Investig. 2021; 42(1): 77–85. DOI: https://doi.org/10.1515/hmbci-2020-0074
  34. Maares M., Hackler J., Haupt A., Heller R.A., Bachmann M., Diegmann J., et al. Free zinc as a predictive marker for COVID-19 mortality risk. Nutrients. 2022; 14(7): 1407. DOI: https://doi.org/10.3390/nu14071407
  35. Borborema M.E., Lucena T.M., Silva J.D. Vitamin D and estrogen steroid hormones and their immunogenetic roles in Infectious respiratory (TB and COVID-19) diseases. Genet. Mol. Biol. 2023; 46(1 Suppl. 2): e20220158. DOI: https://doi.org/10.1590/1415-4757-GMB-2022-0158
  36. Dominguez L.J., Farruggia M., Veronese N., Barbagallo M. Vitamin D sources, metabolism, and deficiency: available compounds and guidelines for its treatment. Metabolites. 2021; 11(4): 255. DOI: https://doi.org/10.3390/metabo11040255
  37. Ahvanooei M.R., Norouzian M.A., Vahmani P. Beneficial effects of vitamins, minerals, and bioactive peptides on strengthening the immune system against COVID-19 and the role of cow’s milk in the supply of these nutrients. Biol. Trace Elem. Res. 2022; 200(11): 4664–77. DOI: https://doi.org/10.1007/s12011-021-03045-x
  38. Bhattarai H.K., Shrestha S., Rokka K., Shakya R. Vitamin D, calcium, parathyroid hormone, and sex steroids in bone health and effects of aging. J. Osteoporos. 2020; 2020: 9324505. DOI: https://doi.org/10.1155/2020/9324505
  39. Severino P., D’Amato A., Prosperi S., Myftari V., Labbro Francia A., Önkaya M., et al. The mutual relationship among cardiovascular diseases and COVID-19: focus on micronutrients imbalance. Nutrients. 2022; 14(16): 3439. DOI: https://doi.org/10.3390/nu14163439
  40. Zoccali C., Mallamaci F., Adamczak M., de Oliveira R.B., Massy Z.A., Sarafidis P., et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc. Res. 2023; 119(11): 2017–32. DOI: https://doi.org/10.1093/cvr/cvad083
  41. Jahangirimehr A., Shahvali E.A., Rezaeijo S.M., Khalighi A., Honarmandpour A., Honarmandpour F., et al. Machine learning approach for automated predicting of COVID-19 severity based on clinical and paraclinical characteristics: Serum levels of zinc, calcium, and vitamin D. Clin. Nutr. ESPEN. 2022; 51: 404–11. DOI: https://doi.org/10.1016/j.clnesp.2022.07.011
  42. Kistamás K., Veress R., Horváth B., Bányász T., Nánási P.P., Eisner D.A. Calcium handling defects and cardiac arrhythmia syndromes. Front. Pharmacol. 2020; 11: 72. DOI: https://doi.org/10.3389/fphar.2020.00072
  43. Teymouri N., Mesbah S., Navabian S.M., Shekouh D., Najafabadi M.M., Norouzkhani N., et al ECG frequency changes in potassium disorders: a narrative review. Am. J. Cardiovasc. Dis. 2022; 12(3): 112–24.
  44. Abassi Z., Khoury E.E., Karram T., Aronson D. Edema formation in congestive heart failure and the underlying mechanisms. Front. Cardiovasc. Med. 2022; 9: 933215. DOI: https://doi.org/10.3389/fcvm.2022.933215
  45. Gonzalez A.A., Salinas-Parra N., Cifuentes-Araneda F., Reyes-Martinez C. Vasopressin actions in the kidney renin angiotensin system and its role in hypertension and renal disease. Vitam. Horm. 2020; 113: 217–38. DOI: https://doi.org/10.1016/bs.vh.2019.09.003
  46. Marreiro D.D., Cruz K.J., Oliveira A.D., Morais J.B., Bjesa F., Melo S.R., et al. Antiviral and immunological activity of zinc and possible role in COVID-19. Br. J. Nutr. 2021; 127(8): 1172–9. DOI: https://doi.org/10.1017/S0007114521002099
  47. Wu F.Y., Wu C.W. The role of zinc in DNA and RNA polymerases. In: Metal Ions in Biological Systems: Volume 15: Zinc and its Role in Biology and Nutrition. CRC Press; 2023: 157–92.
  48. Kumari D., Garg S., Bhawrani P. Zinc homeostasis in immunity and its association with preterm births. Scand. J. Immunol. 2022; 95(4): e13142. DOI: https://doi.org/10.1111/sji.13142
  49. Wang W., Kang P.M. Oxidative stress and antioxidant treatments in cardiovascular diseases. Antioxidants. 2020; 9(12): 1292. DOI: https://doi.org/10.3390/antiox9121292
  50. Alluri K., Nair K.P., Ghosh S. Differential expression of zinc transporters in functionally contrasting tissues involved in zinc homeostasis. Nucleosides Nucleotides Nucleic Acids. 2020; 39(4): 615–29. DOI: https://doi.org/10.1080/15257770.2019.1670838
  51. Tanita A., Namiuchi S., Onodera K., Sunamura S., Ogata T., Noda K., et al. Serum zinc concentration in patients with myocardial infarction: a retrospective study. BMC Cardiovasc. Disord. 2024; 24(1): 107. DOI: https://doi.org/10.1186/s12872-024-03776-4
  52. Latic N., Erben R.G. Vitamin D and cardiovascular disease, with emphasis on hypertension, atherosclerosis, and heart failure. Int. J. Mol. Sci. 2020; 21(18): 6483. DOI: https://doi.org/10.3390/ijms21186483
  53. Tran N., Garcia T., Aniqa M., Ali S., Ally A., Nauli S.M. Endothelial nitric oxide synthase (eNOS) and the cardiovascular system: in physiology and in disease states. Am. J. Biomed. Sci. Res. 2022; 15(2): 153.
  54. Mohd S., Sharma S., Mishra A., Ashraf M.Z. Vitamin D and its relationship with the pathways related to thrombosis and various diseases. In: Özdemir Ö., ed. Vitamin D. IntechOpen; 2021. DOI: https://doi.org/10.5772/intechopen.97299

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of all study samples, including those from patients and the control group

Download (70KB)
3. Fig. 2. The distribution of COVID-19 patients by age and gender

Download (95KB)

Copyright (c) 2024 AlKhuzaie A.A., Jabbar E.A., Albadry B.J.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».