Electrolytes, Zinc and Vitamin D3 in COVID-19 Patients with Cardiovascular Complications
- Authors: AlKhuzaie A.A.1,2, Jabbar E.A.2, Albadry B.J.3
-
Affiliations:
- College of Science, University of Thi-Qar
- Ministry of Education, Directorate of Education
- University of Thi-Qar
- Issue: Vol 69, No 3 (2024)
- Pages: 266-276
- Section: ORIGINAL RESEARCH
- URL: https://journal-vniispk.ru/0507-4088/article/view/259218
- DOI: https://doi.org/10.36233/0507-4088-236
- EDN: https://elibrary.ru/mjyyjw
- ID: 259218
Cite item
Full Text
Abstract
Introduction. COVID-19 is strongly linked to cardiovascular disease, with direct myocardial injury and systemic inflammation as common mechanisms. Pre-existing or infection-induced cardiovascular disease worsens the outcomes for COVID-19 patients.
Materials and methods. To estimate the serum electrolytes (Na+, K+, Ca++, Zn) and vitamin D3, the study depended on ichroma ii device for Vitamin D3 and Chemistry Analyzer for electrolytes in patient samples.
Results. A study was conducted on 192 individuals diagnosed with COVID-19, including 35 critical cases, 53 severe cases, 54 moderate cases, and 50 individuals in a control group. The age group with the highest prevalence of infection was between 50‒69 years, while the lowest prevalence was observed in those under 30 years. The study found significant decreases in calcium, potassium, sodium, zinc, and vitamin D3 levels among COVID-19 patients compared to the control group. Zinc and vitamin D3 levels showed a significant correlation with sex, with males experiencing a decline in zinc levels and females having lower vitamin D3 levels. The concentration of calcium, sodium, and zinc showed a negative correlation with age, with older patients having the lowest levels. COVID-19 patients with chronic cardiac issues and high blood pressure exhibited the lowest levels of these markers. The severity of the disease also had a detrimental impact on electrolyte levels, zinc, and vitamin D3, with critical cases showing the lowest levels. The complications such as heart failure were associated with lower levels of potassium, sodium, and zinc.
Conclusion. In conclusion, the study revealed significant associations between COVID-19 and decreased electrolyte levels, zinc, and vitamin D3. Sex and age were found to be correlated with these markers. Patients with chronic cardiac issues and high blood pressure exhibited the lowest levels of these markers. The severity of the disease was also linked to lower electrolyte levels, zinc, and vitamin D3. Complications such as heart failure were associated with decreased levels of potassium, sodium, and zinc.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Ali Abdel-Moneim Mohammed-Hussain AlKhuzaie
College of Science, University of Thi-Qar; Ministry of Education, Directorate of Education
Email: Medicalresearch11@yahoo.com
ORCID iD: 0009-0009-4693-2579
Postgraduate Student, Lecturer, Department of Biology
Iraq, Thi-Qar; Thi-QarEnas Abdul Kareem Jabbar
Ministry of Education, Directorate of Education
Email: Enaskareemjj0@gmail.com
ORCID iD: 0000-0002-8327-5434
Dr., Professor, Lecturer
Iraq, Thi-QarBushra Jabbar Albadry
University of Thi-Qar
Author for correspondence.
Email: bushra.jh.bio@sci.utq.edu.iq
ORCID iD: 0000-0002-5129-7700
Assistant Professor, Head Manager, Faculty of Nursing
Iraq, Thi-QarReferences
- Montezano A.C., Camargo L.L., Mary S., Neves K.B., Rios F.J., Stein R., et al. SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Sci. Rep. 2023; 13(1): 14086. DOI: https://doi.org/10.1038/s41598-023-41115-3
- Akshay P.S., Veena S.M., Teja K.B., Tomar S.J. Severe Acute Respiratory Syndrome associated Corona Virus [SARS-CoV]. In: Emerging Human Viral Diseases, Volume I: Respiratory and Haemorrhagic Fever. Singapore: Springer Nature Singapore; 2023: 157–87. DOI: https://doi.org/10.1007/978-981-99-2820-0_5
- Grubišić B., Švitek L., Ormanac K., Sabo D., Mihaljević I., Bilić-Ćurčić I., et al. Molecular mechanisms responsible for diabetogenic effects of COVID-19 infection – induction of autoimmune dysregulation and metabolic disturbances. Int. J. Mol. Sci. 2023; 24(14): 11576. DOI: https://doi.org/10.3390/ijms241411576
- Hadi H.S., Enayah S.H. Effects of COVID-19 infection on some pancreatic functions in diabetic patients at Thi-Qar province/Iraq. Univ. Thi-Qar J. Sci. 2022; 9(2): 66–74. DOI: https://doi.org/10.32792/utq/utjsci/v9i2.906
- Tyagi K., Rai P., Gautam A., Kaur H., Kapoor S., Suttee A., et al. Neurological manifestations of SARS-CoV-2: Complexity, mechanism and associated disorders. Eur. J. Med. Res. 2023; 28(1): 307. DOI: https://doi.org/10.1186/s40001-023-01293-2
- Alhawiti N.M., Alhawiti J.M., Alshalan S.D., Alotaibi B.A., Khobrani A.Y. Clinical outcomes of anticoagulant therapy in COVID-19 patients with pre-existing cardiovascular diseases: a systematic review. Infect. Drug Resist. 2023; 16: 3767–75. DOI: https://doi.org/10.2147/IDR.S410374
- Bilehjani E., Fakhari S., Farzin H., Tajlil A., Nader N.D. Diagnosis and treatment of cardiovascular manifestations of COVID-19: A narrative review. Acta Cardiol. 2024; 79(3): 267–73. DOI: https://doi.org/10.1080/00015385.2023.2246200
- Pannucci P., Jefferson S.R., Hampshire J., Cooper S.L., Hill S.J., Woolard J. COVID-19-Induced myocarditis: Pathophysiological roles of ACE2 and toll-like receptors. Int. J. Mol. Sci. 2023; 24(6): 5374. DOI: https://doi.org/10.3390/ijms24065374
- Chatterjee S., Nalla L.V., Sharma M., Sharma N., Singh A.A., Malim F.M., et al. Association of COVID-19 with comorbidities: an update. ACS Pharmacol. Transl. Sci. 2023; 6(3): 334–54. DOI: https://doi.org/10.1021/acsptsci.2c00181
- Alsaidan A.A., Al-Kuraishy H.M., Al-Gareeb A.I., Alexiou A., Papadakis M., Alsayed K.A., et al. The potential role of SARS-CoV-2 infection in acute coronary syndrome and type 2 myocardial infarction (T2MI): Intertwining spread. Immun. Inflamm. Dis. 2023; 11(3): e798. DOI: https://doi.org/10.1002/iid3.798
- Musa M. The Prevalence and the significance of the pulmonary bacterial super-infections among hospitalized COVID-19 patients: A scoping Review. Univ. Thi-Qar J. Sci. 2023; 10(1). DOI: https://doi.org/10.32792/utq/utjsci/v10i1.930
- McGuone D., Farrand N., Prizeman G., O’Brien F. COVID-19 outcomes in patients with pre-existing cardiovascular disease and risk factors: perspectives from a hospital in Ireland. Br. J. Card. Nurs. 2024; 19(1): 1–3. DOI: https://doi.org/10.12968/bjca.2023.0097
- Su Y.J., Kuo K.C., Wang T.W., Chang C.W. Gender-based differences in COVID-19. New Microbes New Infect. 2021; 42: 100905. DOI: https://doi.org/10.1016/j.nmni.2021.100905
- Al-Hijaj B., Al-rubaye A., Al-Hashim Z., Mohammed M., Habib O. A study on 696 COVID-19 cases in Basrah-Southern Iraq: severity and outcome indicators. Iraqi Natl J. Med. 2020; 2(3): 19–26. DOI: https://doi.org/10.37319/iqnjm.2.csi.3
- Mukherjee S, Pahan K. Is COVID-19 gender-sensitive? J. Neuroimmune Pharmacol. 2021; 16(1): 38–47. DOI: https://doi.org/10.1007/s11481-020-09974-z
- Pradhan A., Olsson P.E. Sex differences in severity and mortality from COVID-19: are males more vulnerable? Biol. Sex Differ. 2020; 11(1): 53. DOI: https://doi.org/10.1186/s13293-020-00330-7
- Achua J.K., Chu K.Y., Ibrahim E., Khodamoradi K., Delma K.S., Iakymenko O.A., et al. Histopathology, and ultrastructural findings of fatal COVID-19 infections on testis. World J. Mens Health. 2021; 39(1): 65. DOI: https://doi.org/10.5534/wjmh.200170
- White A. Men and COVID-19: the aftermath. Postgrad. Med. 2020; 132(Suppl. 4): 18–27. DOI: https://doi.org/10.1080/00325481.2020.1823760
- Mushtaq M.Z., Nasir N., Mahmood S.F., Khan S., Kanji A., Nasir A., et al. Older age, lack of vaccination and infection with variants other than Omicron associated with severity of COVID-19 and in-hospital mortality in Pakistan. medRxiv. 2023. Preprint. DOI: https://doi.org/10.1101/2023.01.30.23285170
- Davies N.G., Klepac P., Liu Y., Prem K., Jit M., Eggo R.M. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med. 2020; 26(8): 1205–11. DOI: https://doi.org/10.1038/s41591-020-0962-9
- Mueller A.L., McNamara M.S., Sinclair D.A. Why does COVID-19 disproportionately affect older people? Aging (Albany NY). 2020; 12(10): 9959–81. DOI: https://doi.org/10.18632/aging.103344
- Selvavinayagam S.T., Yong Y.K., Joseph N., Hemashree K., Tan H.Y., Zhang Y., et al. Low SARS-CoV-2 viral load among vaccinated individuals infected with Delta B. 1.617. 2 and Omicron BA. 1.1. 529 but not with Omicron BA. 1.1 and BA. 2 variants. Front. Public Health. 2022; 10: 1018399. DOI: https://doi.org/10.3389/fpubh.2022.1018399
- Elham A.S., Azam K., Azam J., Mostafa L., Nasrin B., Marzieh N. Serum vitamin D, calcium, and zinc levels in patients with COVID-19. Clin. Nutr. ESPEN. 2021; 43: 276–82. DOI: https://doi.org/10.1016/j.clnesp.2021.03.040
- Pecora F., Persico F., Argentiero A., Neglia C., Esposito S. The role of micronutrients in support of the immune response against viral infections. Nutrients. 2020; 12(10): 3198. DOI: https://doi.org/10.3390/nu12103198
- Ali A.A. Overview of the vital roles of macro minerals in the human body. J. Trace Elem. Min. 2023; 100076. DOI: https://doi.org/10.1016/j.jtemin.2023.100076
- Castro D., Sharma S. Hypokalemia. StatPearls. 2024; NBK482465.
- Cao L.L., Gaffney L.K., Marcus C. Hypokalemia-induced rhabdomyolysis in a child with autism affected by the COVID-19 pandemic. J. Dev. Behav. Pediatr. 2022; 43(5): e356–60. DOI: https://doi.org/10.1097/DBP.0000000000001035
- Gruber S., Beuschlein F. Hypokalemia and the prevalence of primary aldosteronism. Horm. Metab. Res. 2020; 52(06): 347–56. DOI: https://doi.org/10.1055/a-1134-4980
- Adrogué H.J., Tucker B.M., Madias N.E. Diagnosis and management of hyponatremia: a review. JAMA. 2022; 328(3): 280–91. DOI: https://doi.org/10.1001/jama.2022.11176
- Workeneh B.T., Meena P., Christ-Crain M., Rondon-Berrios H. Hyponatremia demystified: integrating physiology to shape clinical practice. Adv. Kidney Dis. Health. 2023; 30(2): 85–101. DOI: https://doi.org/10.1053/j.akdh.2022.11.004
- Wessels I., Rolles B., Slusarenko A.J., Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br. J. Nutr. 2022; 127(2): 214–32. https://doi.org/10.1017/S0007114521000738
- Joachimiak M.P. Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLoS Negl. Trop. Dis. 2021; 15(1): e0008895. DOI: https://doi.org/10.1371/journal.pntd.0008895
- Muthuvattur Pallath M., Ahirwar A.K., Chandra Tripathi S., Asia P., Sakarde A., Gopal N. COVID-19 and nutritional deficiency: a review of existing knowledge. Horm. Mol. Biol. Clin. Investig. 2021; 42(1): 77–85. DOI: https://doi.org/10.1515/hmbci-2020-0074
- Maares M., Hackler J., Haupt A., Heller R.A., Bachmann M., Diegmann J., et al. Free zinc as a predictive marker for COVID-19 mortality risk. Nutrients. 2022; 14(7): 1407. DOI: https://doi.org/10.3390/nu14071407
- Borborema M.E., Lucena T.M., Silva J.D. Vitamin D and estrogen steroid hormones and their immunogenetic roles in Infectious respiratory (TB and COVID-19) diseases. Genet. Mol. Biol. 2023; 46(1 Suppl. 2): e20220158. DOI: https://doi.org/10.1590/1415-4757-GMB-2022-0158
- Dominguez L.J., Farruggia M., Veronese N., Barbagallo M. Vitamin D sources, metabolism, and deficiency: available compounds and guidelines for its treatment. Metabolites. 2021; 11(4): 255. DOI: https://doi.org/10.3390/metabo11040255
- Ahvanooei M.R., Norouzian M.A., Vahmani P. Beneficial effects of vitamins, minerals, and bioactive peptides on strengthening the immune system against COVID-19 and the role of cow’s milk in the supply of these nutrients. Biol. Trace Elem. Res. 2022; 200(11): 4664–77. DOI: https://doi.org/10.1007/s12011-021-03045-x
- Bhattarai H.K., Shrestha S., Rokka K., Shakya R. Vitamin D, calcium, parathyroid hormone, and sex steroids in bone health and effects of aging. J. Osteoporos. 2020; 2020: 9324505. DOI: https://doi.org/10.1155/2020/9324505
- Severino P., D’Amato A., Prosperi S., Myftari V., Labbro Francia A., Önkaya M., et al. The mutual relationship among cardiovascular diseases and COVID-19: focus on micronutrients imbalance. Nutrients. 2022; 14(16): 3439. DOI: https://doi.org/10.3390/nu14163439
- Zoccali C., Mallamaci F., Adamczak M., de Oliveira R.B., Massy Z.A., Sarafidis P., et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc. Res. 2023; 119(11): 2017–32. DOI: https://doi.org/10.1093/cvr/cvad083
- Jahangirimehr A., Shahvali E.A., Rezaeijo S.M., Khalighi A., Honarmandpour A., Honarmandpour F., et al. Machine learning approach for automated predicting of COVID-19 severity based on clinical and paraclinical characteristics: Serum levels of zinc, calcium, and vitamin D. Clin. Nutr. ESPEN. 2022; 51: 404–11. DOI: https://doi.org/10.1016/j.clnesp.2022.07.011
- Kistamás K., Veress R., Horváth B., Bányász T., Nánási P.P., Eisner D.A. Calcium handling defects and cardiac arrhythmia syndromes. Front. Pharmacol. 2020; 11: 72. DOI: https://doi.org/10.3389/fphar.2020.00072
- Teymouri N., Mesbah S., Navabian S.M., Shekouh D., Najafabadi M.M., Norouzkhani N., et al ECG frequency changes in potassium disorders: a narrative review. Am. J. Cardiovasc. Dis. 2022; 12(3): 112–24.
- Abassi Z., Khoury E.E., Karram T., Aronson D. Edema formation in congestive heart failure and the underlying mechanisms. Front. Cardiovasc. Med. 2022; 9: 933215. DOI: https://doi.org/10.3389/fcvm.2022.933215
- Gonzalez A.A., Salinas-Parra N., Cifuentes-Araneda F., Reyes-Martinez C. Vasopressin actions in the kidney renin angiotensin system and its role in hypertension and renal disease. Vitam. Horm. 2020; 113: 217–38. DOI: https://doi.org/10.1016/bs.vh.2019.09.003
- Marreiro D.D., Cruz K.J., Oliveira A.D., Morais J.B., Bjesa F., Melo S.R., et al. Antiviral and immunological activity of zinc and possible role in COVID-19. Br. J. Nutr. 2021; 127(8): 1172–9. DOI: https://doi.org/10.1017/S0007114521002099
- Wu F.Y., Wu C.W. The role of zinc in DNA and RNA polymerases. In: Metal Ions in Biological Systems: Volume 15: Zinc and its Role in Biology and Nutrition. CRC Press; 2023: 157–92.
- Kumari D., Garg S., Bhawrani P. Zinc homeostasis in immunity and its association with preterm births. Scand. J. Immunol. 2022; 95(4): e13142. DOI: https://doi.org/10.1111/sji.13142
- Wang W., Kang P.M. Oxidative stress and antioxidant treatments in cardiovascular diseases. Antioxidants. 2020; 9(12): 1292. DOI: https://doi.org/10.3390/antiox9121292
- Alluri K., Nair K.P., Ghosh S. Differential expression of zinc transporters in functionally contrasting tissues involved in zinc homeostasis. Nucleosides Nucleotides Nucleic Acids. 2020; 39(4): 615–29. DOI: https://doi.org/10.1080/15257770.2019.1670838
- Tanita A., Namiuchi S., Onodera K., Sunamura S., Ogata T., Noda K., et al. Serum zinc concentration in patients with myocardial infarction: a retrospective study. BMC Cardiovasc. Disord. 2024; 24(1): 107. DOI: https://doi.org/10.1186/s12872-024-03776-4
- Latic N., Erben R.G. Vitamin D and cardiovascular disease, with emphasis on hypertension, atherosclerosis, and heart failure. Int. J. Mol. Sci. 2020; 21(18): 6483. DOI: https://doi.org/10.3390/ijms21186483
- Tran N., Garcia T., Aniqa M., Ali S., Ally A., Nauli S.M. Endothelial nitric oxide synthase (eNOS) and the cardiovascular system: in physiology and in disease states. Am. J. Biomed. Sci. Res. 2022; 15(2): 153.
- Mohd S., Sharma S., Mishra A., Ashraf M.Z. Vitamin D and its relationship with the pathways related to thrombosis and various diseases. In: Özdemir Ö., ed. Vitamin D. IntechOpen; 2021. DOI: https://doi.org/10.5772/intechopen.97299
