Comparative analysis of whole-genome sequences of African swine fever virus (Asfarviridae: Asfivirus) isolates сollected on the territory of the left bank of the Dnieper River in 2023

Cover Image

Cite item

Abstract

Introduction. The lack of data on the whole-genome sequences of African swine fever virus (ASFV) variants circulating on the territory of the left bank of the Dnieper River complicates the understanding of the molecular evolution of the virus and the character of the epidemic process development in Russia and Ukraine. Understanding the genetic divergence and phylogenetic relatedness of isolates can largely adjust the strategy of general and specific prevention of the disease.

The aim of the study – search and description of unique mutations (deletions/insertions/substitutions) in isolates collected from domestic pigs in Donetsk, Luhansk and Zaporozhye regions in 2023; determination of relatedness and level of homology with reference strains of ASFV genotype II; sub-genotyping and clustering of isolates based on whole-genome analysis.

Materials and methods. The samples used were a culture suspension of porcine bone marrow (PBM) cells containing ASFV isolates obtained from pathologic material from domestic pig carcasses. Genomic DNA was prepared by purification and concentration of virus followed by phenol-chloroform extraction of total nucleic acid. The high-throughput sequencing process was performed using MGI technology. Consensus sequences were assembled by mapping reads to the reference genome of strain Georgia 2007/1.

Results. All isolates are assigned to genotype II, have a monophyletic origin, are phylogenetically close to the clusters «Europe» (4/5) and «Bryansk 2021» (1/5), and are divergent from the original parental genetic variants that make up the enlarged clades. In addition, numerous substitutions in the loci of the multigene family MGF 110, 505, and 360, encoding virulence proteins, were detected in 4 isolates from Donetsk and Zaporozhye regions.

Conclusion. The phylogeny of the genotype II ASFV, which originated from the reference strain Georgia 2007/1, is shown to be sufficient for isolate differentiation. The presented data are of theoretical and practical importance for domestic and international ASFV surveillance.

About the authors

Roman S. Chernyshev

Federal Centre for Animal Health (ARRIAH)

Author for correspondence.
Email: chernishev_rs@arriah.ru
ORCID iD: 0000-0003-3604-7161

postgraduate student, reference laboratory

Russian Federation, 600901, Vladimir

Alexey S. Igolkin

Federal Centre for Animal Health (ARRIAH)

Email: igolkin_as@arriah.ru
ORCID iD: 0000-0002-5438-8026

Head of reference laboratory

Russian Federation, 600901, Vladimir

Nikolay G. Zinyakov

Federal Centre for Animal Health (ARRIAH)

Email: zinyakov@arriah.ru
ORCID iD: 0000-0002-3015-5594

leading researcher, reference laboratory for avian influenza

Russian Federation, 600901, Vladimir

Ilya A. Chvala

Federal Centre for Animal Health (ARRIAH)

Email: chvala@arriah.ru
ORCID iD: 0000-0002-1659-3256

deputy Director

Russian Federation, 600901, Vladimir

References

  1. Beltrán-Alcrudo D., Lubroth J., Depner K., Rocque S. African swine fever in the Caucasus. EMPRES Watch. 2008; 1(8): 1–8. https://doi.org/10.13140/RG.2.1.3579.1200
  2. Nix R.J., Gallardo C., Hutchings G., Blanco E., Dixon L.K. Molecular epidemiology of African swine fever virus studied by analysis of four variable genome regions. Arch. Virol. 2006; 151(12): 2475–94. https://doi.org/10.1007/s00705-006-0794-z
  3. Shen Z.J., Jia H., Xie C.D., Shagainar J., Feng Z., Zhang X., et al. Bayesian phylodynamic analysis reveals the dispersal patterns of African swine fever virus. Viruses. 2022; 14(5): 889. https://doi.org/10.3390/v14050889
  4. Malogolovkin A., Yelsukova A., Gallardo C., Tsybanov S., Kolbasov D. Molecular characterization of African swine fever virus isolates originating from outbreaks in the Russian Federation between 2007 and 2011. Vet. Microbiol. 2012; 158(3-4): 415–9. https://doi.org/10.1016/j.vetmic.2012.03.002
  5. Chapman D.A., Darby A.C., Da Silva M., Upton C., Radford A.D., Dixon L.K. Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerg. Infect. Dis. 2011; 17(4): 599–605. https://doi.org/10.3201/eid1704.101283
  6. Mazloum A., van Schalkwyk A., Shotin A., Igolkin A., Shevchenko I., Gruzdev K.N., et al. Comparative analysis of full genome sequences of African swine fever virus isolates taken from wild boars in Russia in 2019. Pathogens. 2021; 10(5): 521. https://doi.org/10.3390/pathogens10050521
  7. Chernyshev R.S., Sprygin A.V., Shotin A.R., Igolkin A.S., Mazlum A. Comparative analysis of full genome sequences of african swine fever virus isolates taken from domestic pigs and wild boar in Zabaykalsky Krai of Russian Federation in 2020. Veterinariya, zootekhniya i biotekhnologiya. 2022; (10): 84–97. https://doi.org/10.36871/vet.zoo.bio.202210010 https://elibrary.ru/qcgsux (in Russian)
  8. Zhang Y., Wang Q., Zhu Z., Wang S., Tu S., Zhang Y., et al. Tracing the origin of genotype II African swine fever virus in China by genomic epidemiology analysis. Transbound. Emerg. Dis. 2023; (1): 4820809. https://doi.org/10.1155/2023/4820809
  9. Xin G., Kuang Q., Le S., Wu W., Gao Q., Gao H., et al. Origin, genomic diversity and evolution of African swine fever virus in East Asia. Virus Evol. 2023; 9(2): vead060. https://doi.org/10.1093/ve/vead060
  10. Kovalenko G., Ducluzeau A.L., Ishchenko L., Sushko M., Sapachova M., Rudova N., et al. Complete genome sequence of a virulent African swine fever virus from a domestic pig in Ukraine. Microbiol. Resour. Announc. 2019; 8(42): e00883–19. https://doi.org/10.1128/MRA.00883-19
  11. Puzankova O., Gavrilova V., Chernyshev R., Kolbin I., Igolkin A., Sprygin A., et al. Novel protocol for the preparation of porcine bone marrow primary cell culture for African swine fever virus isolation. Methods Protoc. 2023; 6(5): 73. https://doi.org/10.3390/mps6050073
  12. Sun X., Hu Y.H., Wang J., Fang C., Li J., Han M., et al. Efficient and stable metabarcoding sequencing data using a DNBSEQ-G400 sequencer validated by comprehensive community analyses. GigaByte. 2021; 2021: gigabyte16. https://doi.org/10.46471/gigabyte.16
  13. Tcherepanov V., Ehlers A., Upton C. Genome Annotation Transfer Utility (GATU): rapid annotation of viral genomes using a closely related reference genome. BMC Genomics. 2006; 7: 150. https://doi.org/10.1186/1471-2164-7-150.
  14. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018; 35(6): 1547–9. https://doi.org/10.1093/molbev/msy096
  15. Gallardo C., Casado N., Soler A., Djadjovski I., Krivko L., Madueño E., et al. A multi gene-approach genotyping method identifies 24 genetic clusters within the genotype II-European African swine fever viruses circulating from 2007 to 2022. Front. Vet. Sci. 2023; (10): 1112850. https://doi.org/10.3389/fvets.2023.1112850
  16. Chernyshev R.S., Igolkin A.S., Shotin A.R., Zinyakov N.G., Kolbin I.S., Sadchikova A.S., et al. Spatio-temporal clustering of African swine fever virus (Asfarviridae: Asfivirus) circulating in the Kaliningrad region based on three genome markers. Voprosy virusologii. 2024; 69(3): 241–54. https://doi.org/10.36233/0507-4088-231 https://elibrary.ru/lbevpz (in Russian)
  17. Sun E., Huang L., Zhang X., Zhang J., Shen D., Zhang Z., et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg. Microbes Infect. 2021; 10(1): 2183–93. https://doi.org/10.1080/22221751.2021.1999779
  18. Zhao D., Sun E., Huang L., Ding L., Zhu Y., Zhang J., et al. Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs. Nat. Commun. 2023; 14(1): 3096. https://doi.org/10.1038/s41467-023-38868-w
  19. Zhu Z., Chen H., Liu L., Cao Y., Jiang T., Zou Y., et al. Classification and characterization of multigene family proteins of African swine fever viruses. Brief. Bioinform. 2021; 22(4): bbaa380. https://doi.org/10.1093/bib/bbaa380
  20. Balyshev V.M., Bolgova M.V., Balysheva V.I., Bolgova M.V., Knyazeva M.V., Zhivoderov S.P. Preparation of standard Haemadsorption-inhibiting reference sera against African swine fever virus. Voprosy normativno-pravovogo regulirovaniya v veterinarii. 2015; (2): 23–5. https://elibrary.ru/twnfvt (in Russian)
  21. Wu L., Yang B., Yuan X., Hong J., Peng M., Chen J.L., et al. Regulation and evasion of host immune response by African swine fever virus. Front. Microbiol. 2021; 12: 698001. https://doi.org/0.3389/fmicb.2021.698001
  22. Redrejo-Rodríguez M., Rodríguez J.M., Suárez C., Salas J., Salas M.L. Involvement of the reparative DNA polymerase Pol X of African swine fever virus in the maintenance of viral genome stability in vivo. J. Virol. 2013; 87(17): 9780–7. https://doi.org/10.1128/JVI.01173-13
  23. Chen S., Zhang X., Nie Y., Li H., Chen W., Lin W., et al. African swine fever virus protein E199L promotes cell autophagy through the interaction of PYCR2. Virol. Sin. 2021; 36(2): 196–206. https://doi.org/10.1007/s12250-021-00375-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Spread of ASF in Ukraine (2012–2024).

Download (467KB)
3. Fig. 2. Spectrophotometric indices (a) of gDNA samples and bioinformatic metadata: number of reads (b), specificity of reads (c), coverage (d) obtained after resequencing. Note: fragments with l ow coverage are indicated . 1 – ASFV/DNR/DP2023/2466-1; 2 – ASFV/DNR/DP2023/2466-3; 3 – ASFV/DNR/DP2023/3343-2; 4 – ASFV/Zaporozskaya/DP2023/2896-5; 5 – ASFV/LNR/DP2023/42-1.

Download (645KB)
4. Fig. 3. Multiple alignment of MGF 110-1L (a), MGF 505-9R (b), NP419L (c), and I267L (d) genes showing non-synonymous substitutions.

Download (973KB)
5. Fig. 4. Homology of isolates collected on the territory of the Dnieper left bank with strains characterized in geographically distant areas of Eurasia.

Download (132KB)
6. Fig. 5. Phylogenetic tree of ASFV isolates collected in Eurasia from 2007 to 2023. Note: isolates obtained in this study are labeled ●.

Download (525KB)
7. Supplement
Download (104KB)

Copyright (c) 2024 Chernyshev R.S., Igolkin A.S., Zinyakov N.G., Chvala I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».