The impact of innate immune response on the efficacy of oncolytic viruses

Cover Image

Cite item

Full Text

Abstract

Oncolytic viruses represent a promising class of immunotherapeutic agents for the treatment of malignant tumors. The proposed mechanism of action of various oncolytic viruses has initially been explained by the ability of such viruses to selectively lyse tumor cells without damaging healthy ones. Recently, there have emerged more studies determining the effect of the antiviral immunostimulating mechanisms on the effectiveness of treatment in cancer patients. Stimulation of innate immune cells by an oncolytic virus can initiate an adaptive antitumor immune response, yet at the same time, the antiviral mechanisms of the immune system can limit the spread of the virus, thereby reducing its effectiveness. Thus, the success of the clinical application of the oncolytic viruses directly depends on the three key components: tumor immunosuppression, antiviral responses, and antitumor immune responses.

The review presents current data on the influence of pattern recognition receptors on the effectiveness of oncolytic viruses.

About the authors

Kirill N. Trachuk

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)

Author for correspondence.
Email: trachuk_kn@chumakovs.su
ORCID iD: 0000-0002-2061-0274

P.G. student, Junior researcher of the Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides 

Russian Federation, 108819, Moscow

Nikolai B. Pestov

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)

Email: trachuk_kn@chumakovs.su
ORCID iD: 0000-0002-9973-0120

Ph. D., Senior Researcher of the Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides 

Russian Federation, 108819, Moscow

Yulia K. Biryukova

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)

Email: trachuk_kn@chumakovs.su
ORCID iD: 0000-0002-5804-4001

Ph. D., Researcher of the Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides 

Russian Federation, 108819, Moscow

Nadezhda M. Kolyasnikova

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)

Email: trachuk_kn@chumakovs.su
ORCID iD: 0000-0002-9934-2582

Dr. Sci. (Med.), Leading Researcher, Head of the Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides 

Russian Federation, 108819, Moscow

References

  1. Kolyasnikova N.M., Pestov N.B., Sanchez-Pimentel J.P., Barlev N.A., Ishmukhametov A.A. Anti-cancer virotherapy in Russia): lessons from the past, current challenges and prospects for the future. Curr. Pharm. Biotechnol. 2023; 24(2): 266–78. https://doi.org/10.2174/1389201023666220516121813
  2. Nazarenko A.S., Vorovitch M.F., Biryukova Y.K., Pestov N.B., Orlova E.A., Barlev N.A., et al. Flaviviruses in antitumor therapy. Viruses. 2023; 15(10): 1973. https://doi.org/10.3390/v15101973
  3. Li D., Wu M. Pattern recognition receptors in health and diseases. Sig. Transduct. Target. Ther. 2021; 6(1): 291. https://doi.org/10.1038/s41392-021-00687-0
  4. Medzhitov R., Preston-Hurlburt P., Janeway C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997; 388(6640): 394–7. https://doi.org/10.1038/41131
  5. Fitzgerald K.A., Kagan J.C. Toll-like receptors and the control of immunity. Cell. 2020; 180(6): 1044–66. https://doi.org/10.1016/j.cell.2020.02.041
  6. Behzadi P., García-Perdomo H.A., Karpiński T.M. Toll-like receptors: general molecular and structural biology. J. Immunol. Res. 2021; 2021: 9914854. https://doi.org/10.1155/2021/9914854
  7. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 2010; 11(5): 373–84. https://doi.org/10.1038/ni.1863
  8. Xu Y., Tao X., Shen B., Horng T., Medzhitov R., Manley J.L., et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature. 2000; 408(6808): 111–5. https://doi.org/10.1038/35040600
  9. Suzuki N., Suzuki S., Duncan G.S., Millar D.G., Wada T., Mirtsos C., et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature. 2002; 416(6882): 750–4. https://doi.org/10.1038/nature736
  10. Baccala R., Gonzalez-Quintial R., Lawson B.R., Stern M.E., Kono D.H., Beutler B., et al. Sensors of the innate immune system: their mode of action. Nat. Rev. Rheumatol. 2009; 5(8): 448–56. https://doi.org/10.1038/nrrheum.2009.136
  11. Brown J., Wang H., Hajishengallis G.N., Martin M. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J. Dent. Res. 2011; 90(4): 417–27. https://doi.org/10.1177/0022034510381264
  12. Kawai T., Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011; 34(5): 637–50. https://doi.org/10.1016/j.immuni.2011.05.006
  13. Bugge M., Bergstrom B., Eide O.K., Solli H., Kjønstad I.F., Stenvik J., et al. Surface Toll-like receptor 3 expression in metastatic intestinal epithelial cells induces inflammatory cytokine production and promotes invasiveness. J. Biol. Chem. 2017; 292(37): 15408–25. https://doi.org/10.1074/jbc.m117.784090
  14. Chen C.Y., Shih Y.C., Hung Y.F., Hsueh Y.P. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J. Biomed. Sci. 2019; 26(1): 90. https://doi.org/10.1186/s12929-019-0584-z
  15. Matsumoto M., Oshiumi H., Seya T. Antiviral responses induced by the TLR3 pathway. Rev. Med. Virol. 2011; 21(2): 67–77. https://doi.org/10.1002/rmv.680
  16. Agier J., Żelechowska P., Kozłowska E., Brzezińska-Błaszczyk E. Expression of surface and intracellular Toll-like receptors by mature mast cells. Cent. Eur. J. Immunol. 2016; (4): 333–8. https://doi.org/10.5114/ceji.2016.65131
  17. Kolli D., Velayutham T., Casola A. Host-viral interactions: role of pattern recognition receptors (PRRs) in human pneumovirus infections. Pathogens. 2013; 2(2): 232–63. https://doi.org/10.3390/pathogens2020232
  18. Tomai M.A., Vasilakos J.P. Toll-like receptor 7 and 8 agonists for vaccine adjuvant use. In: Immunopotentiators in Modern Vaccines. Elsevier; 2017: 149–62.
  19. Peng G., Guo Z., Kiniwa Y., Voo K.S., Peng W., Fu T., et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science. 2005; 309(5739): 1380–4. https://doi.org/10.1126/science.1113401
  20. Cerullo V., Seiler M.P., Mane V., Brunetti-Pierri N., Clarke C., Bertin T.K., et al. Toll-like receptor 9 triggers an innate immune response to helper-dependent adenoviral vectors. Mol. Ther. 2007; 15(2): 378–85. https://doi.org/10.1038/sj.mt.6300031
  21. Kumagai Y., Takeuchi O., Akira S. TLR9 as a key receptor for the recognition of DNA. Adv. Drug Deliv. Rev. 2008; 60(7): 795–804. https://doi.org/10.1016/j.addr.2007.12.004
  22. Rehwinkel J., Gack M.U. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat. Rev. Immunol. 2020; 20(9): 537–51. https://doi.org/10.1038/s41577-020-0288-3
  23. Ramos H.J., Gale M. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr. Opin. Virol. 2011; 1(3): 167–76. https://doi.org/10.1016/j.coviro.2011.04.004
  24. Kowalinski E., Lunardi T., McCarthy A.A., Louber J., Brunel J., Grigorov B., et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell. 2011; 147(2): 423–35. https://doi.org/10.1016/j.cell.2011.09.039
  25. Luo D. Toward a crystal-clear view of the viral RNA sensing and response by RIG-I-like receptors. RNA Biol. 2014; 11(1): 25–32. https://doi.org/10.4161/rna.27717
  26. Feng Q., Hato S.V., Langereis M.A., Zoll J., Virgen-Slane R., Peisley A., et al. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep. 2012; 2(5): 1187–96. https://doi.org/10.1016/j.celrep.2012.10.005
  27. Onomoto K., Onoguchi K., Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling): interaction between host and viral factors. Cell. Mol. Immunol. 2021; 18(3): 539–55. https://doi.org/10.1038/s41423-020-00602-7
  28. Gong X.Y., Zhang Q.M., Zhao X., Li Y.L., Qu Z.L., Li Z., et al. LGP2 is essential for zebrafish survival through dual regulation of IFN antiviral response. iScience. 2022; 25(8): 104821. https://doi.org/10.1016/j.isci.2022.104821
  29. Esser-Nobis K., Hatfield L.D., Gale M. Spatiotemporal dynamics of innate immune signaling via RIG-I–like receptors. Proc. Natl. Acad. Sci. USA. 2020; 117(27): 15778–88. https://doi.org/10.1073/pnas.1921861117
  30. Saito T., Hirai R., Loo Y.M., Owen D., Johnson C.L., Sinha S.C., et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. USA. 2007; 104(2): 582–7. https://doi.org/10.1073/pnas.0606699104
  31. Rothenfusser S., Goutagny N., DiPerna G., Gong M., Monks B.G., Schoenemeyer A., et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J. Immunol. 2005; 175(8): 5260–8. https://doi.org/10.4049/jimmunol.175.8.5260
  32. Quicke K.M., Kim K.Y., Horvath C.M., Suthar M.S. RNA helicase LGP2 negatively regulates RIG-I signaling by preventing TRIM25-mediated caspase activation and recruitment domain ubiquitination. J. Interferon Cytokine Res. 2019; 39(11): 669–83. https://doi.org/10.1089/jir.2019.0059
  33. Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004; 5(7): 730–7. https://doi.org/10.1038/ni1087
  34. Korneenko T.V., Pestov N.B., Nevzorov I.A., Daks A.A., Trachuk K.N., Solopova O.N., et al. At the crossroads of the cGAS-cGAMP-STING pathway and the DNA damage response: implications for cancer progression and treatment. Pharmaceuticals (Basel). 2023; 16(12): 1675. https://doi.org/10.3390/ph16121675
  35. De Oliveira Mann C.C., Hornung V. Molecular mechanisms of nonself nucleic acid recognition by the innate immune system. Eur. J. Immunol. 2021; 51(8): 1897–910. https://doi.org/10.1002/eji.202049116
  36. Diner B.A., Li T., Greco T.M., Crow M.S., Fuesler J.A., Wang J., et al. The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol. Syst. Biol. 2015; 11(1): 787. https://doi.org/10.15252/msb.20145808
  37. Unterholzner L., Keating S.E., Baran M., Horan K.A., Jensen S.B., Sharma S., et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 2010; 11(11): 997–1004. https://doi.org/10.1038/ni.1932
  38. Takaoka A., Wang Z., Choi M.K., Yanai H., Negishi H., Ban T., et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007; 448(7152): 501–5. https://doi.org/10.1038/nature06013
  39. Wu J., Sun L., Chen X., Du F., Shi H., Chen C., et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013; 339(6121): 826–30. https://doi.org/10.1126/science.1229963
  40. Zhang Z., Yuan B., Bao M., Lu N., Kim T., Liu Y.J. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 2011; 12(10): 959–65. https://doi.org/10.1038/ni.2091
  41. Kondo T., Kobayashi J., Saitoh T., Maruyama K., Ishii K.J., Barber G.N., et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl. Acad. Sci. USA. 2013; 110(8): 2969–74. https://doi.org/10.1073/pnas.1222694110
  42. Ablasser A., Goldeck M., Cavlar T., Deimling T., Witte G., Röhl I., et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013; 498(7454): 380–4. https://doi.org/10.1038/nature12306
  43. Russell L., Peng K.W. The emerging role of oncolytic virus therapy against cancer. Chin. Clin. Oncol. 2018; 7(2): 16. https://doi.org/10.21037/cco.2018.04.04
  44. Kaufman H.L., Kohlhapp F.J., Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 2015; 14(9): 642–62. https://doi.org/10.1038/nrd4663
  45. Lou E. Oncolytic herpes viruses as a potential mechanism for cancer therapy. Acta Oncol. 2003; 42(7): 660–71. https://doi.org/10.1080/0284186031000518
  46. Chiocca E.A. Oncolytic viruses: 12. Nat. Rev. Cancer. 2002; 2(12): 938–50. https://doi.org/10.1038/nrc948
  47. Ahmed A., Tait S.W.G. Targeting immunogenic cell death in cancer. Mol. Oncol. 2020; 14(12): 2994–3006. https://doi.org/10.1002/1878-0261.12851
  48. Ma J., Ramachandran M., Jin C., Quijano-Rubio C., Martikainen M., Yu D., et al. Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer. Cell. Death Dis. 2020; 11(1): 48. https://doi.org/10.1038/s41419-020-2236-3
  49. Gujar S., Pol J.G., Kim Y., Lee P.W., Kroemer G. Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol. 2018; 39(3): 209–21. https://doi.org/10.1016/j.it.2017.11.006
  50. Kleijn A., Kloezeman J., Treffers-Westerlaken E., Fulci G., Leenstra S., Dirven C., et al. The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity. PLoS One. 2014; 9(5): e97495. https://doi.org/10.1371/journal.pone.0097495
  51. Guo Z.S., Liu Z., Bartlett D.L. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front. Oncol. 2014; 4: 74. https://doi.org/10.3389/fonc.2014.00074
  52. Hu Z., Li Y., Yang J., Liu J., Zhou H., Sun C., et al. Improved antitumor effectiveness of oncolytic HSV-1 viruses engineered with IL-15/IL-15Rα complex combined with oncolytic HSV-1-aPD1 targets colon cancer. Sci. Rep. 2024; 14(1): 23671. https://doi.org/10.1038/s41598-024-72888-w
  53. Xu B., Tian L., Chen J., Wang J., Ma R., Dong W., et al. An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma. Nat. Commun. 2021; 12(1): 5908. https://doi.org/10.1038/s41467-021-26003-6
  54. Aldrak N., Alsaab S., Algethami A., Bhere D., Wakimoto H., Shah K., et al. Oncolytic herpes simplex virus-based therapies for cancer. Cells. 2021; 10(6): 1541. https://doi.org/10.3390/cells10061541
  55. Linder A., Bothe V., Linder N., Schwarzlmueller P, Dahlström F., Bartenhagen C., et al. Defective interfering genomes and the full-length viral genome trigger RIG-I after infection with vesicular stomatitis virus in a replication dependent manner. Front. Immunol. 2021; 12: 595390. https://doi.org/10.3389/fimmu.2021.595390
  56. Zhang P., Han X., Tan W., Chen D., Sun Q. RIG-I-mediated innate immune signaling in tumors reduces the therapeutic effect of oncolytic vesicular stomatitis virus. Thorac. Cancer. 2023; 14(3): 246–53. https://doi.org/10.1111/1759-7714.14740
  57. Solmaz G., Puttur F., Francozo M., Lindenberg M., Guderian M., Swallow M., et al. TLR7 controls VSV replication in CD169+ SCS macrophages and associated viral neuroinvasion. Front. Immunol. 2019; 10: 466. https://doi.org/10.3389/fimmu.2019.00466
  58. Melchjorsen J., Jensen S.B., Malmgaard L., Rasmussen S.B., Weber F., Bowie A.G., et al. Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in a cell-type-specific manner. J. Virol. 2005; 79(20): 12944–51. https://doi.org/10.1128/jvi.79.20.12944-12951.2005
  59. De Marcken M., Dhaliwal K., Danielsen A.C., Gautron A.S., Dominguez-Villar M. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Sci. Signal. 2019; 12(605): eaaw1347. https://doi.org/10.1126/scisignal.aaw1347
  60. Rangaswamy U.S., Wang W., Cheng X., McTamney P., Carroll D., Jin H. Newcastle disease virus establishes persistent infection in tumor cells in vitro: contribution of the cleavage site of fusion protein and second sialic acid binding site of hemagglutinin-neuraminidase. J. Virol. 2017; 91(16): e00770-17. https://doi.org/10.1128/jvi.00770-17
  61. Zhang P., Ding Z., Liu X., Chen Y., Li J., Tao Z., et al. Enhanced replication of virulent Newcastle disease virus in chicken macrophages is due to polarized activation of cells by inhibition of TLR7. Front. Immunol. 2018; 9: 366. https://doi.org/10.3389/fimmu.2018.00366
  62. Bruni D., Chazal M., Sinigaglia L., Chauveau L., Schwartz O., Desprès P., et al. Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons. Sci. Signal. 2015; 8(366): ra25. https://doi.org/10.1126/scisignal.aaa1552
  63. Querec T.D., Akondy R.S., Lee E.K., Cao W., Nakaya H.I., Teuwen D., et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 2009; 10(1): 116–25. https://doi.org/10.1038/ni.1688
  64. Nasirudeen A.M., Wong H.H., Thien P., Xu S., Lam K.P., Liu D.X. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of Dengue virus infection. PLoS Negl. Trop. Dis. 2011; 5(1): e926. https://doi.org/10.1371/journal.pntd.0000926
  65. Ye S., Liang Y., Chang Y., Lai B., Zhong J. Dengue virus replicative-form dsRNA is recognized by RIG-I and MDA5 cooperatively to activate innate immunity. bioRxiv. 2024. Preprint. https://doi.org/10.1101/2024.10.15.618382
  66. Sekaran S.D., Ismail A.A., Thergarajan G., Chandramathi S., Rahman S.K.H., Mani R.R., et al. Host immune response against DENV and ZIKV infections. Front. Cell. Infect. Microbiol. 2022; 12: 975222. https://doi.org/10.3389/fcimb.2022.975222
  67. Lu A.Y., Gustin A., Newhouse D., Gale M. Jr. Viral protein accumulation of Zika virus variants links with regulation of innate immunity for differential control of viral replication, spread, and response to interferon. J. Virol. 2023; 97(5): e01982-22. https://doi.org/10.1128/jvi.01982-22
  68. da Silva M.H.M., Moises R.N.C., Alves B.E.B., Pereira H.W.B., de Paiva A.A.P., Morais I.C., et al. Innate immune response in patients with acute Zika virus infection. Med. Microbiol. Immunol. 2019; 208(6): 703–14. https://doi.org/10.1007/s00430-019-00588-8
  69. Jiang R., Ye J., Zhu B., Song Y., Chen H., Cao S. Roles of TLR3 and RIG-I in mediating the inflammatory response in mouse microglia following Japanese encephalitis virus infection. J. Immunol. Res. 2014; 2014(1): 787023. https://doi.org/10.1155/2014/787023
  70. Nazmi A., Mukherjee S., Kundu K., Dutta K., Mahadevan A., Shankar S.K., et al. TLR7 is a key regulator of innate immunity against Japanese encephalitis virus infection. Neurobiol. Dis. 2014; 69: 235–47. https://doi.org/10.1016/j.nbd.2014.05.036
  71. Awais M., Wang K., Lin X., Qian W., Zhang N., Wang C., et al. TLR7 deficiency leads to TLR8 compensative regulation of immune response against JEV in mice. Front. Immunol. 2017; 8: 160. https://doi.org/10.3389/fimmu.2017.00160
  72. Welte T., Reagan K., Fang H., Machain-Williams C., Zheng X., Mendell N., et al. Toll-like receptor 7-induced immune response to cutaneous West Nile virus infection. J. Gen. Virol. 2009; 90(Pt. 11): 2660–8. https://doi.org/10.1099/vir.0.011783-0
  73. Lim S.M., Koraka P., Osterhaus A.D., Martina B.E. West Nile virus: immunity and pathogenesis. Viruses. 2011; 3(6): 811–28. https://doi.org/10.3390/v3060811
  74. Oshiumi H., Okamoto M., Fujii K., Kawanishi T., Matsumoto M., Koike S., et al. The TLR3/TICAM-1 pathway is mandatory for innate immune responses to poliovirus infection. J. Immunol. 2011; 187(10): 5320–7. https://doi.org/10.4049/jimmunol.1101503
  75. Mohanty M.C., Deshpande J.M. Differential induction of Toll-like receptors & type 1 interferons. Indian J. Med. Res. 2013; 138(2): 209–18.
  76. An Y., Wang X., Wu X., Chen L., Yang Y., Lin X., et al. Oncolytic reovirus induces ovarian cancer cell apoptosis in a TLR3-dependent manner. Virus Res. 2021; 301: 198440. https://doi.org/10.1016/j.virusres.2021.198440
  77. Rice M., Tili E., Loghmani H., Nuovo G.J. The differential expression of toll like receptors and RIG-1 correlates to the severity of infectious diseases. Ann. Diagn. Pathol. 2023; 63: 152102. https://doi.org/10.1016/j.anndiagpath.2022.152102
  78. Dou Y., Yim H.C., Kirkwood C.D., Williams B.R., Sadler A.J. The innate immune receptor MDA 5 limits rotavirus infection but promotes cell death and pancreatic inflammation. EMBO J. 2017; 36(18): 2742–57. https://doi.org/10.15252/embj.201696273
  79. Shekarian T., Sivado E., Jallas A.C., Depil S., Kielbassa J., Janoueix-Lerosey I., et al. Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade. Sci. Transl. Med. 2019; 11(515): eaat5025. https://doi.org/10.1126/scitranslmed.aat5025
  80. Berry N., Suspène R., Caval V., Khalfi P., Beauclair G., Rigaud S., et al. Herpes simplex virus type 1 Infection disturbs the mitochondrial network, leading to type I interferon production through the RNA polymerase III/RIG-I pathway. mBio. 2021; 12(6): e0255721. https://doi.org/10.1128/mbio.02557-21
  81. Zhang N., Guan Y., Li J., Yu J., Yi T. Inactivation of the DNA-sensing pathway facilitates oncolytic herpes simplex virus inhibition of pancreatic ductal adenocarcinoma growth. Int. Immunopharmacol. 2023; 124(Pt. B): 110969. https://doi.org/10.1016/j.intimp.2023.110969
  82. Zyzak J., Mitkiewicz M., Leszczyńska E., Reniewicz P., Moynagh P.N., Siednienko J. HSV-1/TLR9-mediated IFNβ and TNFα induction is mal-dependent in macrophages. J. Innate Immun. 2020; 12(5): 387–98. https://doi.org/10.1159/000504542
  83. Cerullo V., Diaconu I., Romano V., Hirvinen M., Ugolini M., Escutenaire S., et al. An oncolytic adenovirus enhanced for toll-like receptor 9 stimulation increases antitumor immune responses and tumor clearance. Mol. Ther. 2012; 20(11): 2076–86. https://doi.org/10.1038/mt.2012.137
  84. He T., Hao Z., Lin M., Xin Z., Chen Y., Ouyang W., et al. Oncolytic adenovirus promotes vascular normalization and nonclassical tertiary lymphoid structure formation through STING-mediated DC activation. Oncoimmunology. 2022; 11(1): 2093054. https://doi.org/10.1080/2162402x.2022.2093054
  85. Matveeva O.V., Chumakov P.M. Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses. Rev. Med. Virol. 2018; 28(6): e2008. https://doi.org/10.1002/rmv.2008
  86. Kulaeva O.I., Draghici S., Tang L., Kraniak J.M., Land S.J., Tainsky M.A. Epigenetic silencing of multiple interferon pathway genes after cellular immortalization. Oncogene. 2003; 22(26): 4118–27. https://doi.org/10.1038/sj.onc.1206594
  87. Cairns P., Tokino K., Eby Y., Sidransky D. Homozygous deletions of 9p21 in primary human bladder Timors detected by comparative multiplex polymerase chain reaction. Cancer Res. 1994; 54(6): 1422–4.
  88. Diaz M.O., Ziemin S., Le Beau M.M., Pitha P., Smith S.D., Chilcote R.R., et al. Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines. Proc. Natl. Acad. Sci. USA. 1988; 85(14): 5259–63. https://doi.org/10.1073/pnas.85.14.5259
  89. Olopade O.I., Jenkins R.B., Ransom D.T., Malik K., Pomykala H., Nobori T., et al. Molecular analysis of deletions of the short arm of chromosome 9 in human gliomas. Cancer Res. 1992; 52(9): 2523–9.
  90. Fernandez-Garcia M.D., Meertens L., Chazal M., Hafirassou M.L., Dejarnac O., Zamborlini A., et al. Vaccine and wild-type strains of yellow fever virus engage distinct entry mechanisms and differentially stimulate antiviral immune responses. mBio. 2016; 7(1): e01956-15. https://doi.org/10.1128/mbio.01956-15
  91. Felt S.A., Grdzelishvili V.Z. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy): a 5-year update. J. Gen. Virol. 2017; 98(12): 2895–911. https://doi.org/10.1099/jgv.0.000980
  92. Petersen J.M., Her L.S., Varvel V., Lund E., Dahlberg J.E. The matrix protein of vesicular stomatitis virus inhibits nucleocytoplasmic transport when it is in the nucleus and associated with nuclear pore complexes. Mol. Cell. Biol. 2000; 20(22): 8590–601. https://doi.org/10.1128/mcb.20.22.8590-8601.2000
  93. Day G.L., Bryan M.L., Northrup S.A., Lyles D.S., Westcott M.M., Stewart J.H.4th. Immune effects of M51R vesicular stomatitis virus treatment of carcinomatosis from colon cancer. J. Surg. Res. 2020; 245: 127–35. https://doi.org/10.1016/j.jss.2019.07.032
  94. Seegers S.L., Frasier C., Greene S., Nesmelova I.V., Grdzelishvili V.Z. Experimental evolution generates novel oncolytic vesicular stomatitis viruses with improved replication in virus-resistant pancreatic cancer cells. J. Virol. 2020; 94(3): e01643-19. https://doi.org/10.1128/jvi.01643-19
  95. Andtbacka R.H.I., Kaufman H.L., Collichio F., Amatruda T., Senzer N., Chesney J., et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 2015; 33(25): 2780–8. https://doi.org/10.1200/jco.2014.58.3377
  96. van Gent M., Chiang J.J., Muppala S., Chiang C., Azab W., Kattenhorn L., et al. The US3 kinase of herpes simplex virus phosphorylates the RNA sensor RIG-I to suppress innate immunity. J. Virol. 2022; 96(4): e01510-21. https://doi.org/10.1128/jvi.01510-21
  97. Xing J., Wang S., Lin R., Mossman K.L., Zheng C. Herpes simplex virus 1 tegument protein US11 downmodulates the RLR signaling pathway via direct interaction with RIG-I and MDA-5. J. Virol. 2012; 86(7): 3528–40. https://doi.org/10.1128/jvi.06713-11
  98. Xia T., Konno H., Ahn J., Barber G.N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 2016; 14(2): 282–97. https://doi.org/10.1016/j.celrep.2015.12.029
  99. Xia T., Konno H., Barber G.N. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 2016; 76(22): 6747–59. https://doi.org/10.1158/0008-5472.can-16-1404
  100. de Queiroz N.M.G.P., Xia T., Konno H., Barber G.N. Ovarian cancer cells commonly exhibit defective STING signaling which affects sensitivity to viral oncolysis. Mol. Cancer Res. 2019; 17(4): 974–86. https://doi.org/10.1158/1541-7786.mcr-18-0504
  101. Whelan J.T., Singaravelu R., Wang F., Pelin A., Tamming L.A., Pugliese G., et al. CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX. Front. Immunol. 2023; 13: 1050250. https://doi.org/10.3389/fimmu.2022.1050250
  102. Sugimura N., Kubota E., Mori Y., Aoyama M., Tanaka M., Shimura T., et al. Reovirus combined with a STING agonist enhances anti-tumor immunity in a mouse model of colorectal cancer. Cancer Immunol. Immunother. 2023; 72(11): 3593–608. https://doi.org/10.1007/s00262-023-03509-0
  103. Sibal P.A., Matsumura S., Ichinose T., Bustos-Villalobos I., Morimoto D., Eissa I.R., et al. STING activator 2′3′-cGAMP enhanced HSV-1-based oncolytic viral therapy. Mol. Oncol. 2024; 18(5): 1259–77. https://doi.org/10.1002/1878-0261.13603

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Pattern recognition receptors (PRRs) involved in the antiviral response.

Download (357KB)
3. Fig. 2. Mechanisms of oncolytic virus action.

Download (235KB)

Copyright (c) 2024 Trachuk K.N., Pestov N.B., Biryukova Y.K., Kolyasnikova N.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».