The impact of innate immune response on the efficacy of oncolytic viruses
- Authors: Trachuk K.N.1, Pestov N.B.1, Biryukova Y.K.1, Kolyasnikova N.M.1
-
Affiliations:
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
- Issue: Vol 69, No 6 (2024)
- Pages: 479-488
- Section: REVIEWS
- URL: https://journal-vniispk.ru/0507-4088/article/view/277910
- DOI: https://doi.org/10.36233/0507-4088-275
- EDN: https://elibrary.ru/yuzhvf
- ID: 277910
Cite item
Full Text
Abstract
Oncolytic viruses represent a promising class of immunotherapeutic agents for the treatment of malignant tumors. The proposed mechanism of action of various oncolytic viruses has initially been explained by the ability of such viruses to selectively lyse tumor cells without damaging healthy ones. Recently, there have emerged more studies determining the effect of the antiviral immunostimulating mechanisms on the effectiveness of treatment in cancer patients. Stimulation of innate immune cells by an oncolytic virus can initiate an adaptive antitumor immune response, yet at the same time, the antiviral mechanisms of the immune system can limit the spread of the virus, thereby reducing its effectiveness. Thus, the success of the clinical application of the oncolytic viruses directly depends on the three key components: tumor immunosuppression, antiviral responses, and antitumor immune responses.
The review presents current data on the influence of pattern recognition receptors on the effectiveness of oncolytic viruses.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Kirill N. Trachuk
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
Author for correspondence.
Email: trachuk_kn@chumakovs.su
ORCID iD: 0000-0002-2061-0274
P.G. student, Junior researcher of the Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides
Russian Federation, 108819, MoscowNikolai B. Pestov
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
Email: trachuk_kn@chumakovs.su
ORCID iD: 0000-0002-9973-0120
Ph. D., Senior Researcher of the Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides
Russian Federation, 108819, MoscowYulia K. Biryukova
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
Email: trachuk_kn@chumakovs.su
ORCID iD: 0000-0002-5804-4001
Ph. D., Researcher of the Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides
Russian Federation, 108819, MoscowNadezhda M. Kolyasnikova
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
Email: trachuk_kn@chumakovs.su
ORCID iD: 0000-0002-9934-2582
Dr. Sci. (Med.), Leading Researcher, Head of the Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides
Russian Federation, 108819, MoscowReferences
- Kolyasnikova N.M., Pestov N.B., Sanchez-Pimentel J.P., Barlev N.A., Ishmukhametov A.A. Anti-cancer virotherapy in Russia): lessons from the past, current challenges and prospects for the future. Curr. Pharm. Biotechnol. 2023; 24(2): 266–78. https://doi.org/10.2174/1389201023666220516121813
- Nazarenko A.S., Vorovitch M.F., Biryukova Y.K., Pestov N.B., Orlova E.A., Barlev N.A., et al. Flaviviruses in antitumor therapy. Viruses. 2023; 15(10): 1973. https://doi.org/10.3390/v15101973
- Li D., Wu M. Pattern recognition receptors in health and diseases. Sig. Transduct. Target. Ther. 2021; 6(1): 291. https://doi.org/10.1038/s41392-021-00687-0
- Medzhitov R., Preston-Hurlburt P., Janeway C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997; 388(6640): 394–7. https://doi.org/10.1038/41131
- Fitzgerald K.A., Kagan J.C. Toll-like receptors and the control of immunity. Cell. 2020; 180(6): 1044–66. https://doi.org/10.1016/j.cell.2020.02.041
- Behzadi P., García-Perdomo H.A., Karpiński T.M. Toll-like receptors: general molecular and structural biology. J. Immunol. Res. 2021; 2021: 9914854. https://doi.org/10.1155/2021/9914854
- Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 2010; 11(5): 373–84. https://doi.org/10.1038/ni.1863
- Xu Y., Tao X., Shen B., Horng T., Medzhitov R., Manley J.L., et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature. 2000; 408(6808): 111–5. https://doi.org/10.1038/35040600
- Suzuki N., Suzuki S., Duncan G.S., Millar D.G., Wada T., Mirtsos C., et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature. 2002; 416(6882): 750–4. https://doi.org/10.1038/nature736
- Baccala R., Gonzalez-Quintial R., Lawson B.R., Stern M.E., Kono D.H., Beutler B., et al. Sensors of the innate immune system: their mode of action. Nat. Rev. Rheumatol. 2009; 5(8): 448–56. https://doi.org/10.1038/nrrheum.2009.136
- Brown J., Wang H., Hajishengallis G.N., Martin M. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J. Dent. Res. 2011; 90(4): 417–27. https://doi.org/10.1177/0022034510381264
- Kawai T., Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011; 34(5): 637–50. https://doi.org/10.1016/j.immuni.2011.05.006
- Bugge M., Bergstrom B., Eide O.K., Solli H., Kjønstad I.F., Stenvik J., et al. Surface Toll-like receptor 3 expression in metastatic intestinal epithelial cells induces inflammatory cytokine production and promotes invasiveness. J. Biol. Chem. 2017; 292(37): 15408–25. https://doi.org/10.1074/jbc.m117.784090
- Chen C.Y., Shih Y.C., Hung Y.F., Hsueh Y.P. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J. Biomed. Sci. 2019; 26(1): 90. https://doi.org/10.1186/s12929-019-0584-z
- Matsumoto M., Oshiumi H., Seya T. Antiviral responses induced by the TLR3 pathway. Rev. Med. Virol. 2011; 21(2): 67–77. https://doi.org/10.1002/rmv.680
- Agier J., Żelechowska P., Kozłowska E., Brzezińska-Błaszczyk E. Expression of surface and intracellular Toll-like receptors by mature mast cells. Cent. Eur. J. Immunol. 2016; (4): 333–8. https://doi.org/10.5114/ceji.2016.65131
- Kolli D., Velayutham T., Casola A. Host-viral interactions: role of pattern recognition receptors (PRRs) in human pneumovirus infections. Pathogens. 2013; 2(2): 232–63. https://doi.org/10.3390/pathogens2020232
- Tomai M.A., Vasilakos J.P. Toll-like receptor 7 and 8 agonists for vaccine adjuvant use. In: Immunopotentiators in Modern Vaccines. Elsevier; 2017: 149–62.
- Peng G., Guo Z., Kiniwa Y., Voo K.S., Peng W., Fu T., et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science. 2005; 309(5739): 1380–4. https://doi.org/10.1126/science.1113401
- Cerullo V., Seiler M.P., Mane V., Brunetti-Pierri N., Clarke C., Bertin T.K., et al. Toll-like receptor 9 triggers an innate immune response to helper-dependent adenoviral vectors. Mol. Ther. 2007; 15(2): 378–85. https://doi.org/10.1038/sj.mt.6300031
- Kumagai Y., Takeuchi O., Akira S. TLR9 as a key receptor for the recognition of DNA. Adv. Drug Deliv. Rev. 2008; 60(7): 795–804. https://doi.org/10.1016/j.addr.2007.12.004
- Rehwinkel J., Gack M.U. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat. Rev. Immunol. 2020; 20(9): 537–51. https://doi.org/10.1038/s41577-020-0288-3
- Ramos H.J., Gale M. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr. Opin. Virol. 2011; 1(3): 167–76. https://doi.org/10.1016/j.coviro.2011.04.004
- Kowalinski E., Lunardi T., McCarthy A.A., Louber J., Brunel J., Grigorov B., et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell. 2011; 147(2): 423–35. https://doi.org/10.1016/j.cell.2011.09.039
- Luo D. Toward a crystal-clear view of the viral RNA sensing and response by RIG-I-like receptors. RNA Biol. 2014; 11(1): 25–32. https://doi.org/10.4161/rna.27717
- Feng Q., Hato S.V., Langereis M.A., Zoll J., Virgen-Slane R., Peisley A., et al. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep. 2012; 2(5): 1187–96. https://doi.org/10.1016/j.celrep.2012.10.005
- Onomoto K., Onoguchi K., Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling): interaction between host and viral factors. Cell. Mol. Immunol. 2021; 18(3): 539–55. https://doi.org/10.1038/s41423-020-00602-7
- Gong X.Y., Zhang Q.M., Zhao X., Li Y.L., Qu Z.L., Li Z., et al. LGP2 is essential for zebrafish survival through dual regulation of IFN antiviral response. iScience. 2022; 25(8): 104821. https://doi.org/10.1016/j.isci.2022.104821
- Esser-Nobis K., Hatfield L.D., Gale M. Spatiotemporal dynamics of innate immune signaling via RIG-I–like receptors. Proc. Natl. Acad. Sci. USA. 2020; 117(27): 15778–88. https://doi.org/10.1073/pnas.1921861117
- Saito T., Hirai R., Loo Y.M., Owen D., Johnson C.L., Sinha S.C., et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. USA. 2007; 104(2): 582–7. https://doi.org/10.1073/pnas.0606699104
- Rothenfusser S., Goutagny N., DiPerna G., Gong M., Monks B.G., Schoenemeyer A., et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J. Immunol. 2005; 175(8): 5260–8. https://doi.org/10.4049/jimmunol.175.8.5260
- Quicke K.M., Kim K.Y., Horvath C.M., Suthar M.S. RNA helicase LGP2 negatively regulates RIG-I signaling by preventing TRIM25-mediated caspase activation and recruitment domain ubiquitination. J. Interferon Cytokine Res. 2019; 39(11): 669–83. https://doi.org/10.1089/jir.2019.0059
- Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004; 5(7): 730–7. https://doi.org/10.1038/ni1087
- Korneenko T.V., Pestov N.B., Nevzorov I.A., Daks A.A., Trachuk K.N., Solopova O.N., et al. At the crossroads of the cGAS-cGAMP-STING pathway and the DNA damage response: implications for cancer progression and treatment. Pharmaceuticals (Basel). 2023; 16(12): 1675. https://doi.org/10.3390/ph16121675
- De Oliveira Mann C.C., Hornung V. Molecular mechanisms of nonself nucleic acid recognition by the innate immune system. Eur. J. Immunol. 2021; 51(8): 1897–910. https://doi.org/10.1002/eji.202049116
- Diner B.A., Li T., Greco T.M., Crow M.S., Fuesler J.A., Wang J., et al. The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol. Syst. Biol. 2015; 11(1): 787. https://doi.org/10.15252/msb.20145808
- Unterholzner L., Keating S.E., Baran M., Horan K.A., Jensen S.B., Sharma S., et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 2010; 11(11): 997–1004. https://doi.org/10.1038/ni.1932
- Takaoka A., Wang Z., Choi M.K., Yanai H., Negishi H., Ban T., et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007; 448(7152): 501–5. https://doi.org/10.1038/nature06013
- Wu J., Sun L., Chen X., Du F., Shi H., Chen C., et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013; 339(6121): 826–30. https://doi.org/10.1126/science.1229963
- Zhang Z., Yuan B., Bao M., Lu N., Kim T., Liu Y.J. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 2011; 12(10): 959–65. https://doi.org/10.1038/ni.2091
- Kondo T., Kobayashi J., Saitoh T., Maruyama K., Ishii K.J., Barber G.N., et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl. Acad. Sci. USA. 2013; 110(8): 2969–74. https://doi.org/10.1073/pnas.1222694110
- Ablasser A., Goldeck M., Cavlar T., Deimling T., Witte G., Röhl I., et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013; 498(7454): 380–4. https://doi.org/10.1038/nature12306
- Russell L., Peng K.W. The emerging role of oncolytic virus therapy against cancer. Chin. Clin. Oncol. 2018; 7(2): 16. https://doi.org/10.21037/cco.2018.04.04
- Kaufman H.L., Kohlhapp F.J., Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 2015; 14(9): 642–62. https://doi.org/10.1038/nrd4663
- Lou E. Oncolytic herpes viruses as a potential mechanism for cancer therapy. Acta Oncol. 2003; 42(7): 660–71. https://doi.org/10.1080/0284186031000518
- Chiocca E.A. Oncolytic viruses: 12. Nat. Rev. Cancer. 2002; 2(12): 938–50. https://doi.org/10.1038/nrc948
- Ahmed A., Tait S.W.G. Targeting immunogenic cell death in cancer. Mol. Oncol. 2020; 14(12): 2994–3006. https://doi.org/10.1002/1878-0261.12851
- Ma J., Ramachandran M., Jin C., Quijano-Rubio C., Martikainen M., Yu D., et al. Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer. Cell. Death Dis. 2020; 11(1): 48. https://doi.org/10.1038/s41419-020-2236-3
- Gujar S., Pol J.G., Kim Y., Lee P.W., Kroemer G. Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol. 2018; 39(3): 209–21. https://doi.org/10.1016/j.it.2017.11.006
- Kleijn A., Kloezeman J., Treffers-Westerlaken E., Fulci G., Leenstra S., Dirven C., et al. The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity. PLoS One. 2014; 9(5): e97495. https://doi.org/10.1371/journal.pone.0097495
- Guo Z.S., Liu Z., Bartlett D.L. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front. Oncol. 2014; 4: 74. https://doi.org/10.3389/fonc.2014.00074
- Hu Z., Li Y., Yang J., Liu J., Zhou H., Sun C., et al. Improved antitumor effectiveness of oncolytic HSV-1 viruses engineered with IL-15/IL-15Rα complex combined with oncolytic HSV-1-aPD1 targets colon cancer. Sci. Rep. 2024; 14(1): 23671. https://doi.org/10.1038/s41598-024-72888-w
- Xu B., Tian L., Chen J., Wang J., Ma R., Dong W., et al. An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma. Nat. Commun. 2021; 12(1): 5908. https://doi.org/10.1038/s41467-021-26003-6
- Aldrak N., Alsaab S., Algethami A., Bhere D., Wakimoto H., Shah K., et al. Oncolytic herpes simplex virus-based therapies for cancer. Cells. 2021; 10(6): 1541. https://doi.org/10.3390/cells10061541
- Linder A., Bothe V., Linder N., Schwarzlmueller P, Dahlström F., Bartenhagen C., et al. Defective interfering genomes and the full-length viral genome trigger RIG-I after infection with vesicular stomatitis virus in a replication dependent manner. Front. Immunol. 2021; 12: 595390. https://doi.org/10.3389/fimmu.2021.595390
- Zhang P., Han X., Tan W., Chen D., Sun Q. RIG-I-mediated innate immune signaling in tumors reduces the therapeutic effect of oncolytic vesicular stomatitis virus. Thorac. Cancer. 2023; 14(3): 246–53. https://doi.org/10.1111/1759-7714.14740
- Solmaz G., Puttur F., Francozo M., Lindenberg M., Guderian M., Swallow M., et al. TLR7 controls VSV replication in CD169+ SCS macrophages and associated viral neuroinvasion. Front. Immunol. 2019; 10: 466. https://doi.org/10.3389/fimmu.2019.00466
- Melchjorsen J., Jensen S.B., Malmgaard L., Rasmussen S.B., Weber F., Bowie A.G., et al. Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in a cell-type-specific manner. J. Virol. 2005; 79(20): 12944–51. https://doi.org/10.1128/jvi.79.20.12944-12951.2005
- De Marcken M., Dhaliwal K., Danielsen A.C., Gautron A.S., Dominguez-Villar M. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Sci. Signal. 2019; 12(605): eaaw1347. https://doi.org/10.1126/scisignal.aaw1347
- Rangaswamy U.S., Wang W., Cheng X., McTamney P., Carroll D., Jin H. Newcastle disease virus establishes persistent infection in tumor cells in vitro: contribution of the cleavage site of fusion protein and second sialic acid binding site of hemagglutinin-neuraminidase. J. Virol. 2017; 91(16): e00770-17. https://doi.org/10.1128/jvi.00770-17
- Zhang P., Ding Z., Liu X., Chen Y., Li J., Tao Z., et al. Enhanced replication of virulent Newcastle disease virus in chicken macrophages is due to polarized activation of cells by inhibition of TLR7. Front. Immunol. 2018; 9: 366. https://doi.org/10.3389/fimmu.2018.00366
- Bruni D., Chazal M., Sinigaglia L., Chauveau L., Schwartz O., Desprès P., et al. Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons. Sci. Signal. 2015; 8(366): ra25. https://doi.org/10.1126/scisignal.aaa1552
- Querec T.D., Akondy R.S., Lee E.K., Cao W., Nakaya H.I., Teuwen D., et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 2009; 10(1): 116–25. https://doi.org/10.1038/ni.1688
- Nasirudeen A.M., Wong H.H., Thien P., Xu S., Lam K.P., Liu D.X. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of Dengue virus infection. PLoS Negl. Trop. Dis. 2011; 5(1): e926. https://doi.org/10.1371/journal.pntd.0000926
- Ye S., Liang Y., Chang Y., Lai B., Zhong J. Dengue virus replicative-form dsRNA is recognized by RIG-I and MDA5 cooperatively to activate innate immunity. bioRxiv. 2024. Preprint. https://doi.org/10.1101/2024.10.15.618382
- Sekaran S.D., Ismail A.A., Thergarajan G., Chandramathi S., Rahman S.K.H., Mani R.R., et al. Host immune response against DENV and ZIKV infections. Front. Cell. Infect. Microbiol. 2022; 12: 975222. https://doi.org/10.3389/fcimb.2022.975222
- Lu A.Y., Gustin A., Newhouse D., Gale M. Jr. Viral protein accumulation of Zika virus variants links with regulation of innate immunity for differential control of viral replication, spread, and response to interferon. J. Virol. 2023; 97(5): e01982-22. https://doi.org/10.1128/jvi.01982-22
- da Silva M.H.M., Moises R.N.C., Alves B.E.B., Pereira H.W.B., de Paiva A.A.P., Morais I.C., et al. Innate immune response in patients with acute Zika virus infection. Med. Microbiol. Immunol. 2019; 208(6): 703–14. https://doi.org/10.1007/s00430-019-00588-8
- Jiang R., Ye J., Zhu B., Song Y., Chen H., Cao S. Roles of TLR3 and RIG-I in mediating the inflammatory response in mouse microglia following Japanese encephalitis virus infection. J. Immunol. Res. 2014; 2014(1): 787023. https://doi.org/10.1155/2014/787023
- Nazmi A., Mukherjee S., Kundu K., Dutta K., Mahadevan A., Shankar S.K., et al. TLR7 is a key regulator of innate immunity against Japanese encephalitis virus infection. Neurobiol. Dis. 2014; 69: 235–47. https://doi.org/10.1016/j.nbd.2014.05.036
- Awais M., Wang K., Lin X., Qian W., Zhang N., Wang C., et al. TLR7 deficiency leads to TLR8 compensative regulation of immune response against JEV in mice. Front. Immunol. 2017; 8: 160. https://doi.org/10.3389/fimmu.2017.00160
- Welte T., Reagan K., Fang H., Machain-Williams C., Zheng X., Mendell N., et al. Toll-like receptor 7-induced immune response to cutaneous West Nile virus infection. J. Gen. Virol. 2009; 90(Pt. 11): 2660–8. https://doi.org/10.1099/vir.0.011783-0
- Lim S.M., Koraka P., Osterhaus A.D., Martina B.E. West Nile virus: immunity and pathogenesis. Viruses. 2011; 3(6): 811–28. https://doi.org/10.3390/v3060811
- Oshiumi H., Okamoto M., Fujii K., Kawanishi T., Matsumoto M., Koike S., et al. The TLR3/TICAM-1 pathway is mandatory for innate immune responses to poliovirus infection. J. Immunol. 2011; 187(10): 5320–7. https://doi.org/10.4049/jimmunol.1101503
- Mohanty M.C., Deshpande J.M. Differential induction of Toll-like receptors & type 1 interferons. Indian J. Med. Res. 2013; 138(2): 209–18.
- An Y., Wang X., Wu X., Chen L., Yang Y., Lin X., et al. Oncolytic reovirus induces ovarian cancer cell apoptosis in a TLR3-dependent manner. Virus Res. 2021; 301: 198440. https://doi.org/10.1016/j.virusres.2021.198440
- Rice M., Tili E., Loghmani H., Nuovo G.J. The differential expression of toll like receptors and RIG-1 correlates to the severity of infectious diseases. Ann. Diagn. Pathol. 2023; 63: 152102. https://doi.org/10.1016/j.anndiagpath.2022.152102
- Dou Y., Yim H.C., Kirkwood C.D., Williams B.R., Sadler A.J. The innate immune receptor MDA 5 limits rotavirus infection but promotes cell death and pancreatic inflammation. EMBO J. 2017; 36(18): 2742–57. https://doi.org/10.15252/embj.201696273
- Shekarian T., Sivado E., Jallas A.C., Depil S., Kielbassa J., Janoueix-Lerosey I., et al. Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade. Sci. Transl. Med. 2019; 11(515): eaat5025. https://doi.org/10.1126/scitranslmed.aat5025
- Berry N., Suspène R., Caval V., Khalfi P., Beauclair G., Rigaud S., et al. Herpes simplex virus type 1 Infection disturbs the mitochondrial network, leading to type I interferon production through the RNA polymerase III/RIG-I pathway. mBio. 2021; 12(6): e0255721. https://doi.org/10.1128/mbio.02557-21
- Zhang N., Guan Y., Li J., Yu J., Yi T. Inactivation of the DNA-sensing pathway facilitates oncolytic herpes simplex virus inhibition of pancreatic ductal adenocarcinoma growth. Int. Immunopharmacol. 2023; 124(Pt. B): 110969. https://doi.org/10.1016/j.intimp.2023.110969
- Zyzak J., Mitkiewicz M., Leszczyńska E., Reniewicz P., Moynagh P.N., Siednienko J. HSV-1/TLR9-mediated IFNβ and TNFα induction is mal-dependent in macrophages. J. Innate Immun. 2020; 12(5): 387–98. https://doi.org/10.1159/000504542
- Cerullo V., Diaconu I., Romano V., Hirvinen M., Ugolini M., Escutenaire S., et al. An oncolytic adenovirus enhanced for toll-like receptor 9 stimulation increases antitumor immune responses and tumor clearance. Mol. Ther. 2012; 20(11): 2076–86. https://doi.org/10.1038/mt.2012.137
- He T., Hao Z., Lin M., Xin Z., Chen Y., Ouyang W., et al. Oncolytic adenovirus promotes vascular normalization and nonclassical tertiary lymphoid structure formation through STING-mediated DC activation. Oncoimmunology. 2022; 11(1): 2093054. https://doi.org/10.1080/2162402x.2022.2093054
- Matveeva O.V., Chumakov P.M. Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses. Rev. Med. Virol. 2018; 28(6): e2008. https://doi.org/10.1002/rmv.2008
- Kulaeva O.I., Draghici S., Tang L., Kraniak J.M., Land S.J., Tainsky M.A. Epigenetic silencing of multiple interferon pathway genes after cellular immortalization. Oncogene. 2003; 22(26): 4118–27. https://doi.org/10.1038/sj.onc.1206594
- Cairns P., Tokino K., Eby Y., Sidransky D. Homozygous deletions of 9p21 in primary human bladder Timors detected by comparative multiplex polymerase chain reaction. Cancer Res. 1994; 54(6): 1422–4.
- Diaz M.O., Ziemin S., Le Beau M.M., Pitha P., Smith S.D., Chilcote R.R., et al. Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines. Proc. Natl. Acad. Sci. USA. 1988; 85(14): 5259–63. https://doi.org/10.1073/pnas.85.14.5259
- Olopade O.I., Jenkins R.B., Ransom D.T., Malik K., Pomykala H., Nobori T., et al. Molecular analysis of deletions of the short arm of chromosome 9 in human gliomas. Cancer Res. 1992; 52(9): 2523–9.
- Fernandez-Garcia M.D., Meertens L., Chazal M., Hafirassou M.L., Dejarnac O., Zamborlini A., et al. Vaccine and wild-type strains of yellow fever virus engage distinct entry mechanisms and differentially stimulate antiviral immune responses. mBio. 2016; 7(1): e01956-15. https://doi.org/10.1128/mbio.01956-15
- Felt S.A., Grdzelishvili V.Z. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy): a 5-year update. J. Gen. Virol. 2017; 98(12): 2895–911. https://doi.org/10.1099/jgv.0.000980
- Petersen J.M., Her L.S., Varvel V., Lund E., Dahlberg J.E. The matrix protein of vesicular stomatitis virus inhibits nucleocytoplasmic transport when it is in the nucleus and associated with nuclear pore complexes. Mol. Cell. Biol. 2000; 20(22): 8590–601. https://doi.org/10.1128/mcb.20.22.8590-8601.2000
- Day G.L., Bryan M.L., Northrup S.A., Lyles D.S., Westcott M.M., Stewart J.H.4th. Immune effects of M51R vesicular stomatitis virus treatment of carcinomatosis from colon cancer. J. Surg. Res. 2020; 245: 127–35. https://doi.org/10.1016/j.jss.2019.07.032
- Seegers S.L., Frasier C., Greene S., Nesmelova I.V., Grdzelishvili V.Z. Experimental evolution generates novel oncolytic vesicular stomatitis viruses with improved replication in virus-resistant pancreatic cancer cells. J. Virol. 2020; 94(3): e01643-19. https://doi.org/10.1128/jvi.01643-19
- Andtbacka R.H.I., Kaufman H.L., Collichio F., Amatruda T., Senzer N., Chesney J., et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 2015; 33(25): 2780–8. https://doi.org/10.1200/jco.2014.58.3377
- van Gent M., Chiang J.J., Muppala S., Chiang C., Azab W., Kattenhorn L., et al. The US3 kinase of herpes simplex virus phosphorylates the RNA sensor RIG-I to suppress innate immunity. J. Virol. 2022; 96(4): e01510-21. https://doi.org/10.1128/jvi.01510-21
- Xing J., Wang S., Lin R., Mossman K.L., Zheng C. Herpes simplex virus 1 tegument protein US11 downmodulates the RLR signaling pathway via direct interaction with RIG-I and MDA-5. J. Virol. 2012; 86(7): 3528–40. https://doi.org/10.1128/jvi.06713-11
- Xia T., Konno H., Ahn J., Barber G.N. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 2016; 14(2): 282–97. https://doi.org/10.1016/j.celrep.2015.12.029
- Xia T., Konno H., Barber G.N. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 2016; 76(22): 6747–59. https://doi.org/10.1158/0008-5472.can-16-1404
- de Queiroz N.M.G.P., Xia T., Konno H., Barber G.N. Ovarian cancer cells commonly exhibit defective STING signaling which affects sensitivity to viral oncolysis. Mol. Cancer Res. 2019; 17(4): 974–86. https://doi.org/10.1158/1541-7786.mcr-18-0504
- Whelan J.T., Singaravelu R., Wang F., Pelin A., Tamming L.A., Pugliese G., et al. CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX. Front. Immunol. 2023; 13: 1050250. https://doi.org/10.3389/fimmu.2022.1050250
- Sugimura N., Kubota E., Mori Y., Aoyama M., Tanaka M., Shimura T., et al. Reovirus combined with a STING agonist enhances anti-tumor immunity in a mouse model of colorectal cancer. Cancer Immunol. Immunother. 2023; 72(11): 3593–608. https://doi.org/10.1007/s00262-023-03509-0
- Sibal P.A., Matsumura S., Ichinose T., Bustos-Villalobos I., Morimoto D., Eissa I.R., et al. STING activator 2′3′-cGAMP enhanced HSV-1-based oncolytic viral therapy. Mol. Oncol. 2024; 18(5): 1259–77. https://doi.org/10.1002/1878-0261.13603
