Retrospective analysis and forecasting of the spread of viruses in real time: the case of COVID-19 in St. Petersburg and Moscow in 2020–2021
- 作者: Zakharov V.V.1, Balykina Y.E.1
-
隶属关系:
- St. Petersburg State University
- 期: 卷 69, 编号 6 (2024)
- 页面: 500-508
- 栏目: ORIGINAL RESEARCH
- URL: https://journal-vniispk.ru/0507-4088/article/view/277912
- DOI: https://doi.org/10.36233/0507-4088-265
- EDN: https://elibrary.ru/faiopq
- ID: 277912
如何引用文章
详细
The aim of the study is to apply mathematical methods to generate forecasts of the dynamics of random values of the percentage increase in the total number of infected people and the percentage increase in the total number of recovered and deceased patients. The obtained forecasts are used for retrospective forecasting of COVID-19 epidemic process dynamics in St. Petersburg and in Moscow.
Materials and methods. When conducting a retrospective analysis and forecasting the dynamics of the total number of cases and the dynamics of the total number of patients who have either died or recovered, the values of percentage increases in these indicators were used. Retrospective analysis and forecasting of the dynamics of the COVID-19 epidemic process were carried out over 14-day time intervals, starting from March 25, 2020 to January 20, 2021, using the time series forecasting method proposed by the authors.
Results and discussion. The retrospective two-week forecasts of the total number of cases and the number of active cases presented in the paper demonstrated a high accuracy performance, both in Moscow and St. Petersburg. The MAPE (mean absolute percentage error) for the total number of cases at the peaks of incidence, generally, did not exceed 1%. It is shown that the accuracy of the obtained retrospective forecasts of the total number of cases in St. Petersburg, built starting from May 2020, has increased significantly compared to the April forecasts. A similar conclusion can be made regarding the forecasts of the total number of cases in Moscow in April and May 2020.
作者简介
Victor Zakharov
St. Petersburg State University
Email: v.zaharov@spbu.ru
ORCID iD: 0000-0002-2743-3880
PhD, Professor, Department of Mathematical Modeling of Energy Systems
俄罗斯联邦, 99034, St. PetersburgYulia Balykina
St. Petersburg State University
编辑信件的主要联系方式.
Email: j.balykina@spbu.ru
ORCID iD: 0000-0003-2143-0440
PhD, Associate Professor, Department of Mathematical Modeling of Energy Systems
俄罗斯联邦, 99034, St. Petersburg参考
- Foppa I.M. A Historical Introduction to Mathematical Modeling of Infectious Diseases: Seminal Papers in Epidemiology. London: Academic Press; 2016.
- Shinde G.R., Kalamkar A.B., Mahalle P.N., Dey N., Chaki J., Hassanien A.E. Forecasting models for coronavirus disease (COVID-19): A survey of the state-of-the-art. SN Comput. Sci. 2020; 1(4): 197. https://doi.org/10.1007/s42979-020-00209-9
- Kermack W.O., McKendrick A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. (London) A. 1927; 115(772): 700–21. https://doi.org/10.1098/rspa.1927.0118
- Anderson R.M., May R.M. Infectious Diseases of Humans. Dynamics and Control. Oxford: Oxford University Press; 1991.
- Moein S., Nickaeen N., Roointan A., Borhani N., Heidary Z., Javanmard S.H., et al. Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan. Sci. Rep. 2021; 11(1): 4725. https://doi.org/10.1038/s41598-021-84055-6
- Melikechi O., Young A.L., Tang T., Bowman T., Dunson D., Johndrow J. Limits of epidemic prediction using SIR models. J. Math Biol. 2022; 85(4): 36. https://doi.org/10.1007/s00285-022-01804-5
- Dil S., Dil N., Maken Z.H. COVID-19 trends and forecast in the Eastern Mediterranean region with a particular focus on Pakistan. Cureus. 2020; 12(6): e8582. https://doi.org/10.7759/cureus.8582
- Moftakhar L., Seif M., Safe M.S. Exponentially increasing trend of infected patients with COVID-19 in Iran: A comparison of neural network and ARIMA forecasting models. Iran J. Public Health. 2020; 49(Suppl. 1): 92–100. https://doi.org/10.18502/ijph.v49iS1.3675
- Ahmar A.S., Del Val E.B. SutteARIMA: Short-term forecasting method, a case: Covid-19 and stock market in Spain. Sci. Total. Environ. 2020; 729: 138883. https://doi.org/10.1016/j.scitotenv.2020.138883
- Chaudhry R.M., Hanif A., Chaudhary M., Minhas S. 2nd., Mirza K., Ashraf T., et al. Coronavirus disease 2019 (COVID-19): Forecast of an emerging urgency in Pakistan. Cureus. 2020; 12(5): e8346. https://doi.org/10.7759/cureus.8346
- Tandon H., Ranjan P., Chakraborty T., Suhag V. Coronavirus (COVID-19): ARIMA-based time-series analysis to forecast near future and the effect of school reopening in India. J. Health Manag. 2022; 24(3): 373–88. https://doi.org/10.1177/09720634221109087
- Özen F. Random forest regression for prediction of COVID-19 daily cases and deaths in Turkey. Heliyon. 2024; 10(4): e25746. https://doi.org/10.1016/j.heliyon.2024.e25746
- Galasso J., Cao D.M., Hochberg R. A random forest model for forecasting regional COVID-19 cases utilizing reproduction number estimates and demographic data. Chaos Solitons Fractals. 2022; 156: 111779. https://doi.org/10.1016/j.chaos.2021.111779
- Wieczorek M., Siłka J., Woźniak M. Neural network powered COVID-19 spread forecasting model. Chaos Solitons Fractals. 2020; 140: 110203. https://doi.org/10.1016/j.chaos.2020.110203
- Dadyan E., Avetisyan P. Neural networks and forecasting COVID-19. Opt. Mem. Neural Networks. 2021; 30: 225–35. https://doi.org/10.3103/S1060992X21030085
- Tamang S., Singh P., Datta B. Forecasting of COVID-19 cases based on prediction using artificial neural network curve fitting technique. Glob. J. Environ. Sci. Manag. 2020; 6(S): 53–64. https://doi.org/10.22034/GJESM.2019.06.SI.06
- Akimkin V.G., Kuzin S.N., Semenenko T.A., Shipulina O.Yu., Yatsyshina S.B., Tivanova E.V., et al. Patterns of the SARS-CoV-2 epidemic spread in a megacity. Voprosy virusologii. 2020; 65(4): 203–11. https://doi.org/10.36233/0507-4088-2020-65-4-203-211 https://elibrary.ru/fxkaqf (in Russian)
- Akimkin V.G., Kuzin S.N., Semenenko T.A., Ploskireva A.A., Dubodelov D.V., Tivanova E.V., et al. Characteristics of the COVID-19 epidemiological situation in the Russian Federation in 2020. Vestnik Rossiiskoi akademii meditsinskikh nauk. 2021; 76(4): 412–22. https://doi.org/10.15690/vramn1505 https://elibrary.ru/zmowbe (in Russian)
- Akimkin V.G., Popova A.Yu., Ploskireva A.A., Ugleva S.V., Semenenko T.A., Pshenichnaya N.Yu., et al. Covid-19: the evolution of the pandemic in Russia. Report I: manifestations of the COVID-19 epidemic process. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2022; 99(3): 269–86. https://doi.org/10.36233/0372-9311-276 https://elibrary.ru/zxgtfd (in Russian)
- Akimkin V.G., Kuzin S.N., Kolosovskaya E.N., Kudryavtceva E.N., Semenenko T.A., Ploskireva A.A., et al. Assessment of the COVID-19 epidemiological situation in St. Petersburg. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2021; 98(5): 497–511. https://doi.org/10.36233/0372-9311-154 https://elibrary.ru/dtmnhz (in Russian)
- Belov A.B. The academician V.D. Belyakov – the founder of the domestic theory of epidemiological science of the XXI century. Epidemiologiya i Vaktsinoprofilaktika. 2016; 15(6): 9–15. https://elibrary.ru/xemevf (in Russian)
- Sarkisov A.S. Academician V.D. Belyakov and its contribution to the development of epidemiology. Byulleten’ natsional’nogo nauchno-issledovatel’skogo instituta obshchestvennogo zdorov’ya imeni N.A. Semashko. 2020; (4): 68–72. https://doi.org/10.25742/NRIPH.2020.04.010 https://elibrary.ru/qeazcn (in Russian)
- Zakharov V., Balykina Y. Balance model of COVID-19 epidemic based on percentage growth rate. Informatika i avtomatizatsiya. 2021; 20(5): 1034–64. https://doi.org/10.15622/20.5.2 https://elibrary.ru/zczxuw (in Russian)
- Zakharov V., Balykina Y., Ilin I., Tick A. Forecasting a new type of virus spread: a case study of COVID-19 with stochastic parameters. Mathematics. 2022; 10(20): 3725. https://doi.org/10.3390/math10203725
- Balykina Yu.E., Zakharov V.V. Integral inflow and outflow model and its applications. Prikladnaya matematika. Informatika. Protsessy upravleniya. 2024; 20(2): 121–35. https://doi.org/10.21638/spbu10.2024.201 (in Russian)
- Belyakov V.D., Degtyarev A.A., Ivannikov Yu.G. Quality and Efficiency of Anti-Epidemic Measures [Kachestvo i effektivnost’ protivoepidemicheskikh meropriyatii]. Leningrad: Meditsina; 1981. https://elibrary.ru/zfepwn (in Russian)
补充文件
