Комбинированная лекарственная терапия как стратегия повышения эффективности и безопасности лечения инфекций вируса простого герпеса: возможные риски и перспективы
- Авторы: Андронова В.Л.1, Галегов Г.А.1
-
Учреждения:
- ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Минздрава России
- Выпуск: Том 70, № 3 (2025)
- Страницы: 205-216
- Раздел: ОБЗОРЫ
- URL: https://journal-vniispk.ru/0507-4088/article/view/310658
- DOI: https://doi.org/10.36233/0507-4088-301
- EDN: https://elibrary.ru/MIFWYF
- ID: 310658
Цитировать
Аннотация
Вирусы простого герпеса (ВПГ) – чрезвычайно широко распространенные патогены, вызывающие у человека заболевания разной степени тяжести: от легких орофациальных изъязвлений кожи и слизистых оболочек до потенциально опасных для жизни энцефалита и тяжелых генерализованных форм инфекции или рецидивирующих герпетических поражений роговицы, приводящих к слепоте. Обычно для купирования рецидива инфекций ВПГ достаточно стандартного лечения, включающего ацикловир, пенцикловир или соответствующие пролекарства – валацикловир и фамцикловир. Однако пациенты со сниженным иммунным статусом вызывают особую озабоченность. Им часто требуется проведение длительной противовирусной терапии. В таких условиях значительно увеличивается риск развития у вируса лекарственной устойчивости, часто носящей перекрестный характер, т.к. все базовые противогерпетические препараты имеют схожий механизм действия и поражают одну лекарственную мишень – вирусную ДНК-полимеразу (ДНК-pol). При развитии лекарственной резистентности снижается эффективность лечения и возникает необходимость перехода к препаратам второго ряда с тяжелыми побочными эффектами. Таким образом, существует необходимость разработки новых альтернативных путей лечения. Создание препаратов, нацеленных на отличную от ДНК-pol биомишень, исключает риск перекрестной резистентности к ацикловиру и родственным препаратам, а их использование в комбинации с традиционными противогерпетическими препаратами может предотвратить или замедлить развитие лекарственной резистентности у вируса. Важно, что при комбинировании препаратов, воздействующих на инфекционный агент различными путями, терапевтический эффект может сохраняться при использовании более низких доз лекарственных средств благодаря синергическому характеру взаимодействия, что снижает вероятность развития нежелательных побочных эффектов лекарств. В обзоре представлены актуальные данные о состоянии и возможных перспективах развития комбинированной терапии инфекций, вызываемых ВПГ, полученные в результате проведения поиска литературы, связанной с антигерпесвирусной терапией, с использованием баз данных PubMed, Medline, РИНЦ, международного реестра клинических исследований Национального института здоровья США.
Полный текст
Открыть статью на сайте журналаОб авторах
Валерия Львовна Андронова
ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Минздрава России
Автор, ответственный за переписку.
Email: andronova.vl@yandex.ru
ORCID iD: 0000-0002-2467-0282
канд. биол. наук, заведующая лабораторией, ведущий научный сотрудник лаборатории молекулярного патогенеза хронических вирусных инфекций
Россия, 123098, г. МоскваГеоргий Артемьевич Галегов
ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Минздрава России
Email: g.galegov@yandex.ru
ORCID iD: 0000-0001-6162-1650
SPIN-код: 4218-5350
д-р биол. наук, профессор, ведущий научный сотрудник
Россия, 123098, г. МоскваСписок литературы
- Menéndez-Arias L., Delgado R. Update and latest advances in antiretroviral therapy. Trends Pharmacol. Sci. 2022; 43(1): 16–29. https://doi.org/10.1016/j.tips.2021.10.004
- Sarrazin C. The importance of resistance to direct antiviral drugs in HCV infection in clinical practice. J. Hepatol. 2016; 64(2): 486–504. https://doi.org/10.1016/j.jhep.2015.09.011.
- Batool S., Chokkakula S., Song M.S. Influenza treatment: limitations of antiviral therapy and advantages of drug combination therapy. Microorganisms. 2023; 11(1): 183. https://doi.org/10.3390/microorganisms11010183.
- Yan D., Yan B. Viral target and metabolism-based rationale for combined use of recently authorized small molecule COVID-19 medicines: Molnupiravir, nirmatrelvir, and remdesivir. Fundam. Clin. Pharmacol. 2023; 37(4): 726–38. https://doi.org/10.1111/fcp.12889
- Sun W., He S., Martínez-Romero C., Kouznetsova J., Tawa G., Xu M., et al. Synergistic drug combination effectively blocks Ebola virus infection. Antiviral Res. 2017; 137: 165–72. https://doi.org/10.1016/j.antiviral.2016.11.017.
- Xu M., Lee E.M., Wen Z., Cheng Y., Huang W.K., Qian X., et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 2016; 22(10): 1101–7. https://doi.org/10.1038/nm.4184
- Chou S., Ercolani R.J., Derakhchan K. Antiviral activity of maribavir in combination with other drugs active against human cytomegalovirus. Antivir. Res. 2018; 157: 128–33. https://doi.org/10.1016/j.antiviral.2018.07.013
- O’Brien M.S., Markovich K.C., Selleseth D., DeVita A.V., Sethna P., Gentry B.G. In vitro evaluation of current and novel antivirals in combination against human cytomegalovirus. Antiviral Res. 2018; 158: 255–63. https://doi.org/10.1016/j.antiviral.2018.08.015
- Wildum S., Zimmermann H., Lischka P. In vitro drug combination studies of Letermovir (AIC246, MK-8228) with approved anti-human cytomegalovirus (HCMV) and anti-HIV compounds in inhibition of HCMV and HIV replication. Antimicrob. Agents Chemother. 2015; 59(6): 3140–8. https://doi.org/10.1128/AAC.00114-15
- Tognarelli E.I., Palomino T.F., Corrales N., Bueno S.M., Kalergis A.M., González P.A. Herpes simplex virus evasion of early host antiviral responses. Front. Cell. Infect. Microbiol. 2019; 9: 127. https://doi.org/10.3389/fcimb.2019.00127
- van den Bogaart L., Lang B.M., Rossi S., Neofytos D., Walti L.N., Khanna N., et al. Central nervous system infections in solid organ transplant recipients: results from the Swiss transplant cohort study. J. Infect. 2022; 85(1): 1–7. https://doi.org/10.1016/j.jinf.2022.05.019
- Mancuso R., Sicurella M., Agostini S., Marconi P., Clerici M. Herpes simplex virus type 1 and Alzheimer’s disease: link and potential impact on treatment. Expert Rev. Anti Infect. Ther. 2019; 17(9): 715–31. https://doi.org/10.1080/14787210.2019.1656064
- Poole C.L., James S.H. Antiviral therapies for herpesviruses: current agents and new directions. Clin. Ther. 2018; 40(8): 1282–98. https://doi.org/10.1016/j.clinthera.2018.07.006
- Evans T.G., Bernstein D.I., Raborn G.W., Harmenberg J., Kowalski J., Spruance S.L. Double-blind, randomized, placebo-controlled study of topical 5% acyclovir-1% hydrocortisone cream (ME-609) for treatment of UV radiation-induced herpes labialis. Antimicrob. Agents Chemother. 2002; 46(6): 1870–4. https://doi.org/10.1128/aac.46.6.1870-1874.2002
- LeFlore S., Anderson P.L., Fletcher C.V. A risk-benefit evaluation of aciclovir for the treatment and prophylaxis of herpes simplex virus infections. Drug Saf. 2000; 23(2): 131–42. https://doi.org/10.2165/00002018-200023020-00004.
- Glasgow H.L., Zhu H., Xie H., Kenkel E.J., Lee C., Huang M.L., et al. Genotypic testing improves detection of antiviral resistance in human herpes simplex virus. J. Clin. Virol. 2023; 167: 105554. https://doi.org/10.1016/j.jcv.2023.105554
- Wang L.X., Takayama Ito M., Kinoshita-Yamaguchi H., Kakiuchi S., Suzutani T., Nakamichi K., et al. Characterization of DNA polymerase-associated acyclovir-resistant herpes simplex virus type 1: mutations, sensitivity to antiviral compounds, neurovirulence, and in-vivo sensitivity to treatment. Jpn J. Infect. Dis. 2013; 66(5): 404–10. https://doi.org/10.7883/yoken.66.404
- Duan R., de Vries R.D., Osterhaus A.D. Remeijer L., Verjans G.M. Acyclovir-resistant corneal HSV-1 isolates from patients with herpetic keratitis. J. Infect. Dis. 2008; 198(5): 659–63. https://doi.org/10.1086/590668.
- Frobert E., Burrel S., Ducastelle-Lepretre S., Billaud G., Ader F., Casalegno J.S., et al. Resistance of herpes simplex viruses to acyclovir: an update from a ten-year survey in France. Antiviral Res. 2014; 111: 36–41. https://doi.org/10.1016/j.antiviral.2014.08.013
- Ariza-Heredia E.J., Chemaly R.F., Shahani L.R., Jang Y., Champlin R.E., Mulanovich V.E. Delay of alternative antiviral therapy and poor outcomes of acyclovir-resistant herpes simplex virus infections in recipients of allogeneic stem cell transplant–a retrospective study. Transpl. Int. 2018; 31(6): 639–48. https://doi.org/10.1111/tri.13142
- Safrin S., Crumpacker C., Chatis P., Davis R., Hafner R., Rush J., et al. A controlled trial comparing foscarnet with vidarabine for acyclovir-resistant mucocutaneous herpes simplex in the acquired immunodeficiency syndrome. The AIDS Clinical Trials Group. N. Engl. J. Med. 1991; 325(8): 551–5. https://doi.org/10.1056/NEJM199108223250805
- Piret J., Boivin G. Antiviral drugs against herpesviruses. Adv. Exp. Med. Biol. 2021; 1322: 1–30. https://doi.org/10.1007/978-981-16-0267-2_1
- Anton-Vazquez V., Mehra V., Mbisa J.L., Bradshaw D., Basu T.N., Daly M.L., et al. Challenges of aciclovir-resistant HSV infection in allogeneic bone marrow transplant recipients. J. Clin. Virol. 2020; 128: 104421. https://doi.org/10.1016/j.jcv.2020.104421
- Schalkwijk H.H., Georgala A., Gillemot S., Temblador A., Topalis D., Wittnebel S., et al. A herpes simplex virus 1 DNA polymerase multidrug resistance mutation identified in a patient with immunodeficiency and confirmed by gene editing. J. Infect. Dis. 2023; 228(11): 1505–15. https://doi.org/10.1093/infdis/jiad184
- Khellaf L., Bouscarat F., Burrel S., Fidouh N., Hachon L., Bucau M., et al. Novel mutations in antiviral multiresistant HSV-2 genital lesion: A case report. J. Med. Virol. 2022; 94(12): 6122–6. https://doi.org/10.1002/jmv.28070
- Schalkwijk H.H., Gillemot S., Reynders M., Selleslag D., Andrei G., Snoeck R. Heterogeneity and viral replication fitness of HSV-1 clinical isolates with mutations in the thymidine kinase and DNA polymerase. J. Antimicrob. Chemother. 2022; 77(11): 3153–62. https://doi.org/10.1093/jac/dkac297
- Sutton D., Taylor J., Bacon T.H., Boydt M.R. Activity of penciclovir in combination with azido~hymidine, ganciclovir, acyclovir, foscarnet and human interferons against herpes simplex virus replication in cell culture. Antivir. Chem. Chemother. 1992; 3(2): 85-94. https://doi.org/10.1177/095632029200300203
- Gayretli Aydin Z.G., Tanir G., Genc Sel C., Tasci Yıldız Y., Aydin Teke T., Kaman A. Acyclovir Unresponsive Herpes Simplex Encephalitis in a child successfully treated with the addition of Foscarnet: Case report. Arch. Argent. Pediatr. 2019; 117(1): e47–51. https://doi.org/10.5546/aap.2019.eng.e47
- Sagnier S., Poli M., Debruxelles S., Renou P., Rouanet F., Sibon I. High-dose acyclovir combined with foscavir (foscarnet) in the management of severe herpes simplex virus meningoencephalitis. Rev. Neurol. (Paris). 2017; 173(4): 240–2. https://doi.org/10.1016/j.neurol.2017.03.006
- Bache M., Andrei G., Bindl L., Bofferding L., Bottu J., Géron C., et al. Antiviral drug-resistance typing reveals compartmentalization and dynamics of acyclovir-resistant Herpes Simplex Virus Type-2 (HSV-2) in a case of neonatal herpes. J. Pediatric Infect. Dis. Soc. 2014; 3(2): e24–7. https://doi.org/10.1093/jpids/pit045
- Yue Z., Shi J., Li H., Li H. Association between concomitant use of acyclovir or valacyclovir with NSAIDs and an increased risk of acute kidney injury: data mining of FDA adverse event reporting system. Biol. Pharm. Bull. 2018; 41(2): 158–62. https://doi.org/10.1248/bpb.b17-00547
- Heylen R., Miller R. Adverse effects and drug interactions of medications commonly used in the treatment of adult HIV positive patients. Genitourin. Med. 1996; 72(4): 237–46. https://doi.org/10.1136/sti.72.4.237
- Freitas V.R., Fraser-Smith E.B., Matthews T.R. Increased efficacy of ganciclovir in combination with foscarnet against cytomegalovirus and herpes simplex virus type 2 in vitro and in vivo. Antiviral Res. 1989; 12(4): 205–12. https://doi.org/10.1016/0166-3542(89)90030-2
- Tunkel A.R., Glaser C.A., Bloch K.C., Sejvar J.J., Marra C.M., Roos K.L., et al. The management of encephalitis: clinical practice guidelines by the infectious diseases society of America. Clin. Infect. Dis. 2008; 47(3): 303–27. https://doi.org/10.1086/589747.
- Mylonakis E., Kallas W.M., Fishman J.A. Combination antiviral therapy for ganciclovir-resistant cytomegalovirus infection in solid-organ transplant recipients. Clin. Infect. Dis. 2002; 34(10): 1337–41. https://doi.org/10.1086/340101
- Schinazi R.F., Nahmias A. Different in vitro effects of dual combinations of anti-herpes simplex virus compounds. Am. J. Med. 1982; 73(1A): 40–8. https://doi.org/10.1016/0002-9343(82)90061-4
- Topalis D., Gillemot S., Snoeck R., Andrei G. Distribution and effects of amino acid changes in drug-resistant α and β herpesviruses DNA polymerase. Nucleic Acids Res. 2016; 44(20): 9530–54. https://doi.org/10.1093/nar/gkw875
- Kakiuchi S., Nonoyama S., Wakamatsu H., Kogawa K., Wang L., Kinoshita-Yamaguchi H., et al. Neonatal herpes encephalitis caused by a virologically confirmed acyclovir-resistant herpes simplex virus 1 strain. J. Clin. Microbiol. 2013; 51(1): 356–9. https://doi.org/10.1128/jcm.02247-12
- Андронова В.Л., Ясько М.В., Куханова М.К., Скоблов Ю.С., Дерябин П.Г., Галегов Г.А. Исследование подавления репродукции вируса простого герпеса с лекарственной устойчивостью сочетанием фосфита ациклогуанозина с некоторыми противогерпетическими препаратами. Вопросы вирусологии. 2014; 59(6): 32–5. https://elibrary.ru/sxtdrj
- Pancheva S., Shishkov S., Ilieva D. Effect of combined acyclovir and ribavirin on experimental herpes simplex virus type 1 keratoconjunctivitis in rabbits. Acta Microbiol. Bulg. 1993; 29: 61–4.
- Neyts S.J., Andrei G., De Clercq E. The novel immunosuppressive agent mycophenolate mofetil markedly potentiates the antiherpesvirus activities of acyclovir, ganciclovir, and penciclovir in vitro and in vivo. Antimicrob. Agents Chemother. 1998; 42(2): 216–22. https://doi.org/10.1128/AAC.42.2.216
- Sergerie Y., Boivin G. Hydroxyurea enhances the activity of acyclovir and cidofovir against herpes simplex virus type 1 resistant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes. Antiviral Res. 2008; 77(1): 77–80. https://doi.org/10.1016/j.antiviral.2007.08.009
- Андронова В.Л. Современная этиотропная химиотерапия герпесвирусных инфекций: достижения, новые тенденции и перспективы. Альфагерпесвирусы (часть II). Вопросы вирусологии. 2018; 63(4): 149–59. https://doi.org/10.18821/0507-4088-2018-63-4-149-159 https://elibrary.ru/vlfuzb
- Lince K.C., De Mario V.K., Yang G.T., Tran R.T., Nguyen D.T., Sanderson J.N., et al. A systematic review of second-line treatments in antiviral resistant strains of HSV-1, HSV-2, and VZV. Cureus. 2023; 15(3): e35958. https://doi.org/10.7759/cureus.35958
- Kawashima M., Imafuku S., Fujio K., Komazaki H. Single-dose, patient-initiated amenamevir therapy for recurrent genital herpes: a phase 3, randomized, double-blind, placebo-controlled study. Open Forum Infect. Dis. 2022; 9(10): ofac494. https://doi.org/10.1093/ofid/ofac494
- Kawamura Y., Uchibori N., Arakawa T., Fujii T., Negishi S., Morikawa S., et al. Successful treatment of acyclovir-resistant herpes simplex virus infection with amenamevir in a patient who received umbilical cord blood transplantation for T-cell prolymphocytic leukemia. EJHaem. 2024; 5(3): 616–9. https://doi.org/10.1002/jha2.899
- Tayyar R., Ho D. Herpes simplex virus and varicella zoster virus infections in cancer patients. Viruses. 2023; 15(2): 439. https://doi.org/10.3390/v15020439.
- Wald A., Timmler B., Magaret A., Warren T., Tyring S., Johnston C., et al. Effect of pritelivir compared with valacyclovir on genital HSV-2 shedding in patients with frequent recurrences: a randomized clinical trial. JAMA. 2016; 316(23): 2495–503. https://doi.org/10.1001/jama.2016.18189
- Greeley Z.W., Giannasca N.J., Porter M.J., Margulies B.J. Acyclovir, cidofovir, and amenamevir have additive antiviral effects on herpes simplex virus type 1. Antiviral Res. 2020; 176: 104754. https://doi.org/10.1016/j.antiviral.2020.104754
- Chono K., Katsumata K., Suzuki H., Shiraki K. Synergistic activity of amenamevir (ASP2151) with nucleoside analogs against herpes simplex virus types 1 and 2 and varicella-zoster virus. Antiviral Res. 2013; 97(2): 154–60. https://doi.org/10.1016/j.antiviral.2012.12.006
- Schalkwijk H.H., Andrei G., Snoeck R. Combined use of pritelivir with acyclovir or foscarnet suppresses evolution of HSV-1 drug resistance. Virus Evol. 2024; 10(1): veae101. https://doi.org/10.1093/ve/veae101
- Quenelle D.C., Birkmann A., Goldner T., Pfaff T., Zimmermann H., Bonsmann S., et al. Efficacy of pritelivir and acyclovir in the treatment of herpes simplex virus infections in a mouse model of herpes simplex encephalitis. Antiviral Res. 2018; 149: 1–6. https://doi.org/10.1016/j.antiviral.2017.11.002
- Prichard M.N., Kern E.R., Hartline C.B., Lanier E.R., Quenelle D.C. CMX001 potentiates the efficacy of acyclovir in herpes simplex virus infections. Antimicrob. Agents Chemother. 2011; 55(10): 4728–34. https://doi.org/10.1128/AAC.00545-11
- Андронова В.Л. Современная этиотропная химиотерапия цитомегаловирусной инфекции человека: клиническая эффективность, молекулярный механизм действия, лекарственная устойчивость, новые тенденции и перспективы. Часть I. Вопросы вирусологии. 2018; 63(5): 202–11. https://doi.org/10.18821/0507-4088-2018-63-5-202-211 https://elibrary.ru/lcidzi
- Marty F.M., Winston D.J., Chemaly R.F., Mullane K.M., Shore T.B., Papanicolaou G.A., et al. A randomized, double-blind, placebo-controlled phase 3 trial of oral Brincidofovir for cytomegalovirus prophylaxis in allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 2019; 25(2): 369–81. https://doi.org/10.1016/j.bbmt.2018.09.038
- Piret J., Boivin G. Antiviral resistance in herpes simplex virus and varicella-zoster virus infections: diagnosis and management. Curr. Opin. Infect. Dis. 2016; 29(6): 654–62. https://doi.org/10.1097/QCO.0000000000000288
Дополнительные файлы
