Problems of ante mortem diagnostics of prion diseases

Cover Image

Cite item

Full Text

Abstract

The review presents the state-of-the-art on the problem of diagnosis of prion diseases (PD) in humans and animals with a brief description of their etiology and pathogenesis. We pointed out that understanding the nature of the etio logical agent of PD determined their zoonotic potential and led to the development of highly specific immunological diagnostic methods aimed at identifying the infectious isoform of prion protein (PrPd) as the only marker of the disease. In this regard, we briefly summarize the results of studies, including our own, concerning the conversion of normal prion protein molecules (PrPc) to PrPd, the production of monoclonal antibodies and their application as immunodiagnostic reagents for the post-mortem detection of PrPd in various formats of immunoassay. We also emphasize the issues related to the development of methods for ante mortem diagnostics of PD. In this regard, a method for amplifying amino acid sequences using quacking-induced conversion of PrPc to PrPd in real time (RTQuIC) described in details. The results of recent studies on the assessment of the sensitivity, specificity and reproducibility of this method, carried out in various laboratories around the world, are presented. The data obtained indicate that RT-QuIC is currently the most promising laboratory assay for detecting PrPd in biological material at the preclinical stage of the disease. The significant contribution of US scientists to the introduction of this method into clinical practice on the model of diagnosis of chronic wasting disease of wild Cervidae (CWD) is noted. The possible further spread of CWD in the population of moose and deer in the territories bordering with Russia, as well as the established fact of alimentary transmission of CWD to macaques, indicate the threat of the appearance of PD in our country. In conclusion, the importance of developing new hypersensitive and/or selective components of known methods for PrPd identification from the point of view of assessing the risks of creating artificial infectious prion proteins in vivo or in vitro, primarily new pathogenic isoforms (“strains”) and synthetic prions, was outlined.

About the authors

S. L. Kal’nov

FSBI «National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Email: kalnov.sergei@mail.ru
ORCID iD: 0000-0002-3130-4790

Ph.D., Senior Scientist 

123098, Moscow

Ph.D., Senior Scientist  Russian Federation

O. A. Verkhovsky

ANO «Diagnostic and Prevention for Human and Animal Diseases Research Institute»

Email: info@dpri.ru
ORCID iD: 0000-0003-0784-9341

Ph.D., D.Sci. (Biol.)., Prof., President 

Moscow, 123098

Russian Federation

V. V. Tsibezov

FSBI «National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Email: tsibezov@yandex.ru
ORCID iD: 0000-0003-2150-5764

Ph.D., Leading Researcher

123098, Moscow

Russian Federation

K. P. Alekseev

FSBI «National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Email: kalekseev@hotmail.com
ORCID iD: 0000-0001-9536-3127

PhD, Senior Scientist

123098, Moscow

Russian Federation

D. A. Chudakova

School of Biological sciences, University of Auckland

Email: kitsyne1@yandex.ru
ORCID iD: 0000-0002-9354-6824

Research fellow

Auckland 1010

New Zealand

I. E. Filatov

FSBI «National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Email: filat69rus@yandex.ru
ORCID iD: 0000-0001-5274-224X

graduate student, Laboratory of Molecular Diagnostics

123098, Moscow

Russian Federation

T. V. Grebennikova

FSBI «National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Author for correspondence.
Email: t_grebennikova@mail.ru
ORCID iD: 0000-0002-6141-9361

Ph.D., D.Sci. (Biol.). Prof., Corresponding Member of RAS, Head of Laboratory

123098, Moscow

Russian Federation

References

  1. Gambetti P., Russo C. Human brain amyloidosis. Nephrol. Dial. Transplant. 1998; 13(Suppl. 7): 33–40. https://doi.org/10.1093/ndt/13.suppl_7.33.
  2. Lachmann H.J., Hawkins P.N. Systemic amyloidosis. Curr. Opin. Pharm. 2006; 6(2): 214–20. https://doi.org/10.1016/j.coph.2005.10.005.
  3. McKinley M.P., Prusiner S.B. Ultrastructural Studies of Prions. In: Chesebro B.W., ed. Transmissible Spongiform Encephalopathies: Current Topics in Microbiology and Immunology. Berlin, Heidelberg: Springer; 1991. https://doi.org/10.1007/978-3-642-76540-7_5.
  4. Prusiner S.B. Novel proteinaceous infection particles cause scrapie. Science. 1982; 216(4542): 136–44. https://doi.org/10.1126/science.6801762.
  5. Laurent M. Autocatalytic processes in cooperative mechanisms of prion diseases. FEBS Lett. 1997; 407(1): 1–6. https://doi.org/10.1016/s0014-5793(97)00310-4.
  6. Bieschke J., Weber P., Sarafoff N., Beekes M., Giese A., Kretzschmar H. Autocatalytic self-propagation of misfolded prion protein. Proc. Natl. Acad. Sci. USA. 2004; 101(33): 12207–11. https://doi.org/10.1073/pnas.0404650101.
  7. Harris D.A. Cellular biology of prion diseases. Clin. Microbiol. Rev. 1999; 12(3): 429–44.
  8. Hegde R.S., Mastrianni J.A., Scott M.R., DeFea K.A., Tremblay P., Torchia M., et al. A transmembrane form of the prion protein in neurodegenerative disease. Science. 1998; 279(5352): 827–34. https://doi.org/10.1126/science.279.5352.827.
  9. Mead S. Prion disease genetics. Eur. J. Hum. Genet. 2006; 14(3): 273–81. https://doi.org/10.1038/sj.ejhg.5201544.
  10. Bessen R.A., Kocisko D.A., Raymond G.J., Nandan S., Lansbury P.T., Caughey B. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature. 1995; 375(6533): 698–700. https://doi.org/10.1038/375698a0.
  11. Collinge J., Clarke A.R. A general model of prion strains and their pathogenicity. Science. 2007; 318(5852): 930–6. https://doi.org/10.1126/science.1138718.
  12. Prusiner S.B. Prions. Proc. Natl. Acad. Sci. USA. 1998; 95(23): 13363–83. https://doi.org/10.1073/pnas.95.23.13363.
  13. Baskakov I.V., Breydo L. Converting the prion protein: what makes the protein infectious. Biochim. Biophys. Acta. 2007; 1772(6): 692–703. https://doi.org/10.1016/j.bbadis.2006.07.007.
  14. Benestad S.L., Telling G.C. Chronic wasting disease: an evolving prion disease of cervids. Handb. Clin. Neurol. 2018; 153: 135–51. https://doi.org/10.1016/B978-0-444-63945-5.00008-8.
  15. Sakudo A. Chronic wasting disease: current assessment of transmissibility. Curr. Issues Mol. Biol. 2020; 36: 13–22. https://doi.org/10.21775/cimb.036.013.
  16. Зуев В.А., Завалишин И.А., Ройхель В.М. Прионные болезни человека и животных. Руководство для врачей. М.: Медицина; 1999.
  17. Зуев В.А. Медленные инфекции человека и животных. Вопросы вирусологии. 2014; 59(5): 5–12.
  18. Надточей Г.А., Шубин В.А., Юров К.П., Коромыслов Г.Ф. Экспериментальные прионные инфекции у животных. Труды Всероссийского НИИ экспериментальной ветеринарии им. Я.Р. Коваленко. 1999; 72: 299–305.
  19. Рыбаков С.С. Скрепи и другие прионные болезни животных и человека. Владимир: Фолиант; 2003.
  20. Рыбаков С.С. Губкообразная энцефалопатия крупного рогато- го скота. Владимир: Фолиант; 2007.
  21. Надточей Г.А. Прионные инфекции: диагностика, профилактика и меры борьбы. Бюллетень Всесоюзного ордена Ленина научно-исследовательского института экспериментальной ветеринарии им. Я.Р. Коваленко. 1996; 77: 5–10.
  22. Суворов В.С., Шубин В.А., Надточей Г.А., Юров К.П., Санджаев Д.Д. Патоморфологическая дифференциация прионных инфекций: скрепи овец и губкообразная энцефалопатия крупного рогатого скота. Труды Всероссийского НИИ экспериментальной ветеринарии им. Я.Р. Коваленко. 2003; 73: 60–3.
  23. Кальнов С.Л., Григорьев В.Б., Алексеев К.П., Власова А.Н., Гибадулин Р.А., Покидышев А.Н. и др. Получение и характеристика полноразмерного рекомбинантного PrPc белка крупного рогатого скота. Бюллетень экспериментальной биологии и медицины. 2006; 141(1): 68–71.
  24. Grigorjev V.B., Kal’nov S.L., Pokidyshev A.N., Tsibezov V.V., Balandina M.V., Gibadulin R.A., et al. Fibrillization of recombinant bovine prion protein (rec-PrP) in vitro. Dokl. Biochem. Biophys. 2008; 420: 112–4. https://doi.org/10.1134/S1607672908030046.
  25. Кальнов С.Л., Верховский О.А., Алипер Т.И. Прионные болезни животных. В кн.: Львов Д.К., ред. Руководство по вирусологии. Вирусы и вирусные инфекции человека и животных. М.: МИА; 2013: 910–21.
  26. Покидышев А.Н. Характеристика рекомбинантного прионного белка крупного рогатого скота (Bos taurus) и разработка методов выявления патологической изоформы прионов: Дис. … канд. биол. наук. М.; 2009.
  27. Григорьев В.Б., Покидышев А.Н., Кальнов С.Л., Клименко С.М. Методы диагностики прионных заболеваний. Вопросы вирусологии. 2009; 54(5): 4–9.
  28. O’Rourke K.I., Baszler T.V., Parish S.M., Knowles D.P. Preclinical detection of PrPSc in nictitating membrane lymphoid tissue of sheep. Vet. Rec. 1998; 142(18): 489–91. https://doi.org/10.1136/vr.142.18.489.
  29. O’Rourke K.I., Baszler T.V., Besser T.E., Miller J.M., Cutlip R.C., Wells G.A., et al. Preclinical diagnosis of scrapie by immunohistochemistry of third eyelid lymphoid tissue. J. Clin. Microbiol. 2000; 38(9): 3254–9. https://doi.org/10.1128/JCM.38.9.3254-3259.2000.
  30. Spraker T.R., VerCauteren K.C., Gidlewski T., Schneider D.A., Munger R., Balachandran A., et al. Antemortem detection of PrPCWD in pre-clinical, ranch-raised Rocky Mountain Elk (Cervus elaphus nelsoni) by biopsy of the rectal mucosa. J. Vet. Diagn. Invest. 2009; 21(1): 15–24. https://doi.org/10.1177/104063870902100103.
  31. Andréoletti O., Berthon P., Marc D., Sarradin P., Grosclaude J., van Keulen L., et al. Early accumulation of PrPsc in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. J. Gen. Virol. 2000; 81(12): 3115–26. https://doi.org/10.1099/0022-1317-81-12-3115.
  32. Hilton D.A., Ghani A.C., Conyers L., Edwards P., McCardle L., Ritchie D., et al. Accumulation of prion protein in tonsil and appendix: review of tissue samples. Brit. Med. J. 2002; 325(7365): 633–4. https://doi.org/10.1136/bmj.325.7365.633.
  33. Saborio G.P., Permanne B., Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 2001; 411(6839): 810–3. https://doi.org/10.1038/35081095.
  34. Saa P., Castilla J., Soto C. Presymptomatic detection of prions in blood. Science. 2006; 313(5783): 92–4. https://doi.org/10.1126/science.1129051.
  35. Atarashi R., Wilham J.M., Christensen L., Hughson A.G., Moore R.A., Johnson L.M., et al. Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat. Methods. 2008; 5(3):211–2. https://doi.org/10.1038/nmeth0308-211.
  36. Atarashi R., Sano K., Satoh K., Nishida N. Real-time quaking-induced conversion: a highly sensitive assay for prion detection. Prion. 2011; 5(3): 150–3. https://doi.org/10.4161/pri.5.3.16893.
  37. Henderson D.M., Davenport K.A., Haley N.J., Denkers N.D., Mathiason C.K., Hoover E.A. Quantitative assessment of prion infectivity in tissues and body fluids by real-time quaking-induced conversion. J. Gen. Virol. 2015; 96(Pt. 1): 210–9. https://doi.org/10.1099/vir.0.069906-0.
  38. Dassanayake R.P., Orrú C.D., Hughson A.G., Caughey B., Graça T., Zhuang D., et al. Sensitive and specific detection of classical scrapie prions in the brains of goats by real-time quaking-induced conversion. J. Gen. Virol. 2016; 97(3): 803–12. https://doi.org/10.1099/jgv.0.000367.
  39. Orrú C.D., Groveman B.R., Raymond L.D., Hughson A.G., Nonno R., Zou W., et al. Bank vole prion protein as an apparently universal substrate for RT-QuIC-based detection and discrimination of prion strains. PLoS Pathog. 2015; 11(6): e1004983. https://doi.org/10.1371/journal.ppat.1004983.
  40. Favole A., Mazza M., Vallino Costassa E., D’Angelo A., Lombardi G., Marconi P., et al. Early and pre-clinical detection of prion seeding activity in cerebrospinal fluid of goats using real-time quaking- induced conversion assay. Sci. Rep. 2019; 9(1): 6173. https://doi.org/10.1038/s41598-019-42449-7.
  41. Davenport K.A., Hoover C.E., Denkers N.D., Mathiason C.K., Hoover E.A. Modified protein misfolding cyclic amplification overcomes real-time quaking-induced conversion assay inhibitors in deer saliva to detect Chronic Wasting Disease prions. J. Clin. Microbiol. 2018; 56(9): e00947-18. https://doi.org/10.1128/JCM.00947-18.
  42. Mammana A., Baiardi S., Rossi M., Franceschini A., Donadio V., Capellari S., et al. Detection of prions in skin punch biopsies of Creutzfeldt-Jakob disease patients. Ann. Clin. Translat. Neurol. 2020; 7(4): 559–64. https://doi.org/10.1002/acn3.51000.
  43. Bongianni M., Orrú C.D., Groveman B.R., Sacchetto L., Fiorini M., Tonoli G., et al. Diagnosis of human prion disease using real-time quaking-induced conversion testing of olfactory mucosa and cerebrospinal fluid samples. JAMA Neurol. 2017; 74(2): 155–62. https://doi.org/10.1001/jamaneurol.2016.4614.
  44. McGuire L.I., Poleggi A., Poggiolini I., Suardi S., Grznarova K., Shi S., et al. Cerebrospinal fluid real-time quaking-induced conversion is a robust and reliable test for sporadic Creutzfeldt-Jakob disease: An international study. Ann. Neurol. 2016; 80(1): 160–5. https://doi.org/10.1002/ana.24679.
  45. Cramm M., Schmitz M., Karch A., Mitrova E., Kuhn F., Schroeder B., et al. Stability and reproducibility underscore utility of RT-QuIC for diagnosis of Creutzfeldt-Jakob disease. Mol. Neurobiol. 2016; 53(3): 1896–904. https://doi.org/10.1007/s12035-015-9133-2.
  46. Haley N.J., Donner R., Henderson D.M., Tennant J., Hoover E.A., Manca M., et al. Cross-validation of the RT-QuIC assay for the antemortem detection of chronic wasting disease in elk. Prion. 2020; 14(1): 47–55. https://doi.org/10.1080/19336896.2020.1716657.
  47. Hwang S., Tatum T., Lebepe-Mazur S., Nicholson E.M. Preparation of lyophilized recombinant prion protein for TSE diagnosis by RTQuIC. BMC Res. Notes. 2018; 11(1): 895. https://doi.org/10.1186/s13104-018-3982-5.
  48. Koutsoumanis K., Allende A., Alvarez-Ordoñez A., Bolton D., Bover-Cid S., Chemaly M., et al. Update on chronic wasting disease (CWD). EFSA J. 2019; 17(11): e05863. https://doi.org/10.2903/j.efsa.2019.5863.
  49. Schaetzl H. One Health Workshop Series 2020: Chronic Wasting Disease. Zoonotic potential of CWD. Available at: https://ucalgary.zoom.us/rec/play/hja-r64RAavwd07Wv9-D4QAly-36SAILGC_QNqu6j2f6c2F4WhsgM-opx5x56pIDu41zgUwR4moiOAkPf.9-DQ27JE9yCVhyA-?startTime=1602079098000.
  50. Orrú C.D., Wilham J.M., Raymond L.D., Kuhn F., Schroeder B., Raeber A.J., et al. Prion disease blood test using immunoprecipitation and improved quaking-induced conversion. mBio. 2011; 2(3):e00078-11. https://doi.org/10.1128/mBio.00078-11.
  51. Denkers N.D., Henderson D.M., Mathiason C.K., Hoover E.A. Enhanced prion detection in biological samples by magnetic particle extraction and real-time quaking-induced conversion. J. Gen. Virol. 2016; 97(8): 2023–9. https://doi.org/10.1099/jgv.0.000515.
  52. Haley N.J., Richt J.A., Davenport K.A., Henderson D.M., Hoover E.A., Manca M., et al. Design, implementation, and interpretation of amplification studies for prion detection. Prion. 2018; 12(2): 73–82. https://doi.org/10.1080/19336896.2018.1443000.
  53. Metrick M.A., do Carmo Ferreira N., Saijo E., Hughson A.G., Kraus A., Orrú C.D., et al. Million-fold sensitivity enhancement in proteopathic seed amplification assays for biospecimens by Hofmeister ion comparisons. Proc. Natl. Acad. Sci. USA. 2019; 116(46): 23029–39. https://doi.org/10.1073/pnas.1909322116.
  54. Saa P., Cervenakova L. Protein misfolding cyclic amplification (PMCA): Current status and future directions. Virus Res. 2015; 207:47–61. https://doi.org/10.1016/j.virusres.2014.11.007.
  55. Seed C.R., Hewitt P.E., Dodd R.Y., Houston F., Cervenakova L. Creutzfeldt-Jakob disease and blood transfusion safety. Vox Sang. 2018; 113(3): 220–31. https://doi.org/10.1111/vox.12631.
  56. Kim C., Xiao X., Chen S., Haldiman T., Smirnovas V., Kofskey D., et al. Artificial strain of human prions created in vitro. Nat. Commun. 2018; 9(1): 2166. https://doi.org/10.1038/s41467-018-04584-z.
  57. Barria M.A., Libori A., Mitchell G., Head M.W. Susceptibility of human prion protein to conversion by Chronic Wasting Disease prions. Emerg. Infect. Dis. 2018; 24(8): 1482–9. https://doi.org/10.3201/eid2408.161888.
  58. Зуев В.А., Кальнов С.Л., Куликова Н.Ю., Гребенникова Т.В. Современное состояние проблемы прионных болезней и причины их опасности для человека и животных. Вопросы вирусологии. 2020; 65(2): 71–6. https://doi.org/10.36233/0507-4088-2020-65-2-71-76.
  59. Saijo E., Groveman B.R., Kraus A., Metrick M., Orrú C.D., Hughson A.G., et al. Ultrasensitive RT-QuIC seed amplification assays for disease-associated Tau, α‑synuclein, and prion aggregates. Methods Mol. Biol. 2019; 1873: 19–37. https://doi.org/10.1007/978-1-4939-8820-4_2.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Kal’nov S.L., Verkhovsky O.A., Tsibezov V.V., Alekseev K.P., Chudakova D.A., Filatov I.E., Grebennikova T.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».