HIV drug resistance: past and current trends

Cover Page

Cite item

Full Text

Abstract

HIV infection is incurable, but effective antiretroviral therapy (ART) makes it possible to achieve an undetectable viral load (VL), to preserve the function of the immune system and to prevent the patient’s health. Due to the constant increase in the use of ART and the high variability of HIV, especially in patients receiving so-called suboptimal therapy for various reasons, the incidence of drug resistance (DR) is increasing. In turn, the presence of DR in an HIV-infected patient affects the effectiveness of therapy, which leads to a limited choice and an increase in the cost of treatment regimens, disease progression and, consequently, an increased risk of death, as well as transmission of infection to partners. The main problems of drug resistance, its types and causes, as well as factors associated with its development are considered. The main drug resistance mutations for each of the drug classes are described.

About the authors

Ekaterina N. Ozhmegova

FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Email: ozhmegova.eka@gmail.com
ORCID iD: 0000-0002-3110-0843

junior researcher, Institute of Virology named after D. I. Ivanovsky

Russian Federation, 123098, Gamaleya Street, 18, Moscow

Marina R. Bobkova

FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia

Author for correspondence.
Email: mrbobkova@mail.ru
ORCID iD: 0000-0001-5481-8957
SPIN-code: 3912-8165

doctor of science (biology), professor, head of the T-lymphotropic viruses laboratory, Institute of Virology named after D. I. Ivanovsky

Russian Federation, 123098, Gamaleya Street, 18, Moscow

References

  1. Federal Scientific and Methodological Center for the Prevention and Control of AIDS. HIV certificate in Russia as of 31.12.2021. Available at: http://www.hivrussia.info/wp-content/uploads/2022/03/Spravka-VICH-v-Rossii-na-31.12.2021-g..pdf (in Russian)
  2. WHO. The HIV drug resistance report – 2012. Available at: https://apps.who.int/iris/handle/10665/75183
  3. Perera M.R., Wills M.R., Sinclair J.H. HCMV antivirals and strategies to target the latent reservoir. Viruses. 2021; 13(5): 817. https://doi.org/10.3390/v13050817
  4. Frange P., Leruez-Ville M. Maribavir, brincidofovir and letermovir: Efficacy and safety of new antiviral drugs for treating cytomegalovirus infections. Med. Mal. Infect. 2018; 48(8): 495–502. https://doi.org/10.1016/j.medmal.2018.03.006
  5. Wittkop L., Gunthard H.F., de Wolf F., Dunn D., Cozzi-Lepri A., de Luca A., et al. Effect of transmitted drug resistance on virological and immunological response to initial combination antiretroviral therapy for HIV (EuroCoord-CHAIN joint project): a European multicohort study. Lancet Infect. Dis. 2011; 11(5): 363–71. https://doi.org/10.1016/S1473-3099(11)70032-9
  6. Macdonald V., Mbuagbaw L., Jordan M.R., Mathers B., Jay S., Baggaley R., et al. Prevalence of pretreatment HIV drug resistance in key populations: a systematic review and meta-analysis. J. Int. AIDS Soc. 2020; 23(12): e25656. https://doi.org/10.1002/jia2.25656
  7. Gupta-Wright A., Fielding K., van Oosterhout J.J., Alufandika M., Grint D.J., Chimbayo E., et al. Virological failure, HIV-1 drug resistance, and early mortality in adults admitted to hospital in Malawi: an observational cohort study. Lancet HIV. 2020; 7(9): e620–8. https://doi.org/10.1016/s2352-3018(20)30172-7
  8. Moraka N.O., Garcia-Broncano P., Hu Z., Ajibola G., Bareng O.T., Pretorius-Holme M., et al. Patterns of pretreatment drug resistance mutations of very early diagnosed and treated infants in Botswana. AIDS. 2021; 35(15): 2413–21. https://doi.org/10.1097/qad.0000000000003041
  9. Willim R., Shadabi E., Sampathkumar R., Li L., Balshaw R., Kimani J., et al. High level of pre-treatment HIV-1 drug resistance and its association with HLA class I-mediated restriction in the Pumwani Sex Worker cohort. Viruses. 2022; 14(2): 273. https://doi.org/10.3390/v14020273
  10. Weidle P.J., Mastro T.D., Grant A.D., Nkengasong J., Macharia D. HIV/AIDS treatment and HIV vaccines for Africa. Lancet. 2002; 359(9325): 2261–7. https://doi.org/10.1016/s0140-6736(02)09297-8
  11. Little S.J., Holte S., Routy J.P., Daar E.S., Markowitz M., Collier A.C., et al. Antiretroviral-drug resistance among patients recently infected with HIV. N. Engl. J. Med. 2002; 347(6): 385–94. https://doi.org/10.1056/NEJMoa013552
  12. Blower S., Volberding P. What can modeling tell us about the threat of antiviral drug resistance? Curr. Opin. Infect. Dis. 2002; 15(6): 609–14. https://doi.org/10.1097/00001432-200212000-00009
  13. Hecht F.M., Grant R.M., Petropoulos C.J., Dillon B., Chesney M.A., Tian H., et al. Sexual transmission of an HIV-1 variant resistant to multiple reverse-transcriptase and protease inhibitors. N. Engl. J. Med. 1998; 339(5): 307–11. https://doi.org/10.1056/nejm199807303390504
  14. Ammaranond P., Cunningham P., Oelrichs R., Suzuki K., Harris C., Leas L., et al. Rates of transmission of antiretroviral drug resistant strains of HIV-1. J. Clin. Virol. 2003; 26(2): 153–61. https://doi.org/10.1016/s1386-6532(02)00114-2
  15. Bertagnolio S., Beanland R.L., Jordan M.R., Doherty M., Hirnschall G. The World Health Organization’s response to emerging human immunodeficiency virus drug resistance and a call for global action. J. Infect. Dis. 2017; 216(Suppl. 9): S801–4. https://doi.org/10.1093/infdis/jix402
  16. Laga V.Yu., Nemykin A.V., Begma E.N., Strakhova A.M., Vasil’eva N.A., Ozhmegova E.N., et al. Molecular genetic analysis of HIV-1 variants circulating in the Republic of Crimea. VICh-infektsiya i immunosupressii. 2019; 11(4): 91–7. https://doi.org/10.22328/2077-9828-2019-11-4-91-97 (in Russian)
  17. Van Cleef G.F., Fisher E.J., Polk R.E. Drug interaction potential with inhibitors of HIV protease. Pharmacotherapy. 1997; 17(4): 774–8.
  18. King J.R., Wynn H., Brundage R., Acosta E.P. Pharmacokinetic enhancement of protease inhibitor therapy. Clin. Pharmacokinet. 2004; 43(5): 291–310. https://doi.org/10.2165/00003088-200443050-00003
  19. Larder B. Mechanisms of HIV-1 drug resistance. AIDS. 2001; 15(Suppl. 5): S27–34. https://doi.org/10.1097/00002030-200100005-00005
  20. Deeks S.G., Wrin T., Liegler T., Hoh R., Hayden M., Barbour J.D., et al. Virologic and immunologic consequences of discontinuing combination antiretroviral-drug therapy in HIV-infected patients with detectable viremia. N. Engl. J. Med. 2001; 344(7): 472–80. https://doi.org/10.1056/nejm200102153440702
  21. Bangsberg D.R., Deeks S.G. Is average adherence to HIV antiretroviral therapy enough? J. Gen. Intern. Med. 2002; 17(10): 812–3. https://doi.org/10.1046/j.1525-1497.2002.20812.x
  22. Viswanathan S., Detels R., Mehta S.H., Macatangay B.J., Kirk G.D., Jacobson L.P. Level of adherence and HIV RNA suppression in the current era of highly active antiretroviral therapy (HAART). AIDS Behav. 2015; 19(4): 601–11. https://doi.org/10.1007/s10461-014-0927-4
  23. Parienti J.J., Bangsberg D.R., Verdon R., Gardner E.M. Better adherence with once-daily antiretroviral regimens: a meta-analysis. Clin. Infect. Dis. 2009; 48(4): 484–8. https://doi.org/10.1086/596482
  24. Bangsberg D.R., Ragland K., Monk A., Deeks S.G. A single tablet regimen is associated with higher adherence and viral suppression than multiple tablet regimens in HIV+ homeless and marginally housed people. AIDS. 2010; 24(18): 2835–40. https://doi.org/10.1097/QAD.0b013e328340a209
  25. AIDSinfo. Side Effects of Anti-HIV Medications. Available at: https://doh.dc.gov/sites/default/files/dc/sites/doh/publication/attachments/sideeffectanithivmeds.pdf
  26. Caramelli B. Cardiovascular risk and metabolic effects in HIV patients. In: Proceedings of 29th World Congress of Internal Medicine. Buenos Aires; 2008: 16–20.
  27. Richman D.D. HIV chemotherapy. Nature. 2001; 410(6831): 995–1001. https://doi.org/10.1038/35073673
  28. Bangsberg D.R., Moss A.R., Deeks S.G. Paradoxes of adherence and drug resistance to HIV antiretroviral therapy. J. Antimicrob. Chemother. 2004; 53(5): 696–9. https://doi.org/10.1093/jac/dkh162
  29. Bennett D.E., Jordan M.R., Bertagnolio S., Hong S.Y., Ravasi G., McMahon J.H., et al. HIV drug resistance early warning indicators in cohorts of individuals starting antiretroviral therapy between 2004 and 2009: World Health Organization global report from 50 countries. Clin. Infect. Dis. 2012; 54(Suppl. 4): S280–9. https://doi.org/10.1093/cid/cis207
  30. WHO. Global report on early warning indicators of HIV drug resistance – 2016. Available at: http://apps.who.int/iris/bitstream/handle/10665/246219/9789241511179-eng.pdf?sequence=1
  31. Rojas Sánchez P., Domínguez S., Jiménez De Ory S., Prieto L., Rojo P., Mellado P., et al. Trends in drug resistance prevalence, HIV-1 variants and clinical status in HIV-1-infected pediatric population in Madrid: 1993 to 2015 analysis. Pediatr. Infect. Dis. J. 2018; 37(3): e48–57. https://doi.org/10.1097/inf.0000000000001760
  32. Schmidt D., Kollan C., Fätkenheuer G., Schülter E., Stellbrink H.J., Noah C., et al. Estimating trends in the proportion of transmitted and acquired HIV drug resistance in a long term observational cohort in Germany. PLoS One. 2014; 9(8): e104474. https://doi.org/10.1371/journal.pone.0104474
  33. Kirichenko A.A., Kireev D.E., Shlykova A.V., Lopatukhin A.E., Lapovok I.A., Saleeva D.V., et al. HIV-1 drug resistance in patients with virological inefficiency on ART in Russia in 2013-2021. Epidemiologiya i infektsionnye bolezni. Aktual’nye voprosy. 2021; 11(3): 53–62. https://doi.org/10.18565/epidem.2021.11.3.53-62 (in Russian)
  34. Rhee S.Y., Jordan M.R., Raizes E., Chua A., Parkin N., Kantor R., et al. HIV-1 drug resistance mutations: potential applications for point-of-care genotypic resistance testing. PLoS One. 2015; 10(12): e0145772. https://doi.org/10.1371/journal.pone.0145772
  35. Pimentel V., Pingarilho M., Alves D., Diogo I., Fernandes S., Miranda M., et al. Molecular epidemiology of HIV-1 infected migrants followed up in Portugal: Trends between 2001-2017. Viruses. 2020; 12(3): 268. https://doi.org/10.3390/v12030268
  36. Campbell T.B., Shulman N.S., Johnson S.C., Zolopa A.R., Young R.K., Bushman L., et al. Antiviral activity of lamivudine in salvage therapy for multidrug-resistant HIV-1 infection. Clin. Infect. Dis. 2005; 41(2): 236–42. https://doi.org/10.1086/430709
  37. Kuritzkes D.R. Clinical significance of drug resistance in HIV-1 infection. AIDS. 1996; 10(Suppl. 5): S27–31. https://doi.org/10.1097/00002030-199612005-00005
  38. Turner D., Brenner B., Wainberg M.A. Multiple effects of the M184V resistance mutation in the reverse transcriptase of human immunodeficiency virus type 1. Clin. Diagn. Lab. Immunol. 2003; 10(6): 979–81. https://doi.org/10.1128/cdli.10.6.979-981.2003
  39. Petrella M., Wainberg M.A. Might the M184V substitution in HIV-1 RT confer clinical benefit? AIDS Rev. 2002; 4(4): 224–32.
  40. Melikian G.L., Rhee S.Y., Varghese V., Porter D., White K., Taylor J., et al. Non-nucleoside reverse transcriptase inhibitor (NNRTI) cross-resistance: implications for preclinical evaluation of novel NNRTIs and clinical genotypic resistance testing. J. Antimicrob. Chemother. 2014; 69(1): 12–20. https://doi.org/10.1093/jac/dkt316
  41. Kuritzkes D.R., Lalama C.M., Ribaudo H.J., Marcial M., Meyer W.A. 3rd, Shikuma C., et al. Preexisting resistance to nonnucleoside reverse-transcriptase inhibitors predicts virologic failure of an efavirenz-based regimen in treatment-naive HIV-1-infected subjects. J. Infect. Dis. 2008; 197(6): 867–70. https://doi.org/10.1086/528802
  42. Gallant J.E., DeJesus E., Arribas J.R., Pozniak A.L., Gazzard B., Campo R.E., et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N. Engl. J. Med. 2006; 354(3): 251–60. https://doi.org/10.1056/NEJMoa051871
  43. Hofstra L.M., Sauvageot N., Albert J., Alexiev I., Garcia F., Struck D., et al. Transmission of HIV drug resistance and the predicted effect on current first-line regimens in Europe. Clin. Infect. Dis. 2016; 62(5): 655–63. https://doi.org/10.1093/cid/civ963
  44. Wensing A.M., Calvez V., Ceccherini-Silberstein F., Charpentier C., Günthard H.F., Paredes R., et al. 2019 update of the drug resistance mutations in HIV-1. Top. Antivir. Med. 2019; 27(3): 111–21.
  45. Fun A., Wensing A.M., Verheyen J., Nijhuis M. Human immunodeficiency virus gag and protease: partners in resistance. Retrovirology. 2012; 9: 63. https://doi.org/10.1186/1742-4690-9-63
  46. Rabi S.A., Laird G.M., Durand C.M., Laskey S., Shan L., Bailey J.R., et al. Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance. J. Clin. Invest. 2013; 123(9): 3848–60. https://doi.org/10.1172/jci67399
  47. Gupta U., Jain N.K. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv. Drug Deliv. Rev. 2010; 62(4-5): 478–90. https://doi.org/10.1016/j.addr.2009.11.018
  48. Orta-Resendiz A., Rodriguez-Diaz R.A., Angulo-Medina L.A., Hernandez-Flores M., Soto-Ramirez L.E. HIV-1 acquired drug resistance to integrase inhibitors in a cohort of antiretroviral therapy multi-experienced Mexican patients failing to raltegravir: a cross-sectional study. AIDS Res. Ther. 2020; 17(1): 6. https://doi.org/10.1186/s12981-020-0262-y
  49. Castagna A., Maggiolo F., Penco G., Wright D., Mills A., Grossberg R., et al. Dolutegravir in antiretroviral-experienced patients with raltegravir- and/or elvitegravir-resistant HIV-1: 24-week results of the phase III VIKING-3 study. J. Infect. Dis. 2014; 210(3): 354–62. https://doi.org/10.1093/infdis/jiu051
  50. Smith S.J., Zhao X.Z., Burke T.R. Jr., Hughes S.H. Efficacies of Cabotegravir and Bictegravir against drug-resistant HIV-1 integrase mutants. Retrovirology. 2018; 15(1): 37. https://doi.org/10.1186/s12977-018-0420-7
  51. Eron J.J., Clotet B., Durant J., Katlama C., Kumar P., Lazzarin A., et al. Safety and efficacy of dolutegravir in treatment-experienced subjects with raltegravir-resistant HIV type 1 infection: 24-week results of the VIKING Study. J. Infect. Dis. 2013; 207(5): 740–8. https://doi.org/10.1093/infdis/jis750
  52. Mesplède T., Wainberg M.A. Resistance against integrase strand transfer inhibitors and relevance to HIV persistence. Viruses. 2015; 7(7): 3703–18. https://doi.org/10.3390/v7072790
  53. Hassounah S.A., Alikhani A., Oliveira M., Bharaj S., Ibanescu R.I., Osman N., et al. Antiviral activity of bictegravir and cabotegravir against integrase inhibitor-resistant SIVmac239 and HIV-1. Antimicrob. Agents Chemother. 2017; 61(12): e01695-17. https://doi.org/10.1128/aac.01695-17
  54. Rizzardini G., Overton E.T., Orkin C., Swindells S., Arasteh K., Górgolas Hernández-Mora M., et al. Long-acting injectable cabotegravir + rilpivirine for HIV maintenance therapy: week 48 pooled analysis of phase 3 ATLAS and FLAIR trials. J. Acquir. Immune Defic. Syndr. 2020; 85(4): 498–506. https://doi.org/10.1097/qai.0000000000002466
  55. Anstett K., Brenner B., Mesplede T., Wainberg M.A. HIV drug resistance against strand transfer integrase inhibitors. Retrovirology. 2017; 14(1): 36. https://doi.org/10.1186/s12977-017-0360-7
  56. Viani R.M., Alvero C., Fenton T., Acosta E.P., Hazra R., Townley E., et al. Safety, pharmacokinetics and efficacy of dolutegravir in treatment-experienced HIV-1 infected adolescents: Forty-eight-week Results from IMPAACT P1093. Pediatr. Infect. Dis. J. 2015; 34(11): 1207–13. https://doi.org/10.1097/inf.0000000000000848
  57. Cahn P., Pozniak A.L., Mingrone H., Shuldyakov A., Brites C., Andrade-Villanueva J.F., et al. Dolutegravir versus raltegravir in antiretroviral-experienced, integrase-inhibitor-naive adults with HIV: week 48 results from the randomised, double-blind, non-inferiority SAILING study. Lancet. 2013; 382(9893): 700–8. https://doi.org/10.1016/s0140-6736(13)61221-0
  58. Lepik K.J., Harrigan P.R., Yip B., Wang L., Robbins M.A., Zhang W.W., et al. Emergent drug resistance with integrase strand transfer inhibitor-based regimens. AIDS. 2017; 31(10): 1425–34. https://doi.org/10.1097/qad.0000000000001494
  59. Claborn K.R., Meier E., Miller M.B., Leffingwell T.R. A systematic review of treatment fatigue among HIV-infected patients prescribed antiretroviral therapy. Psychol. Health Med. 2015; 20(3): 255–65. https://doi.org/10.1080/13548506.2014.945601
  60. Overton E.T., Richmond G., Rizzardini G., Jaeger H., Orrell C., Nagimova F., et al. Long-acting cabotegravir and rilpivirine dosed every 2 months in adults with HIV-1 infection (ATLAS-2M), 48-week results: a randomised, multicentre, open-label, phase 3b, non-inferiority study. Lancet. 2021; 396(10267): 1994–2005. https://doi.org/10.1016/s0140-6736(20)32666-0
  61. Kirichenko A., Lapovok I., Baryshev P., van de Vijver D., van Kampen J.J.A., Boucher C.A.B., et al. Genetic features of HIV-1 integrase sub-subtype A6 predominant in Russia and predicted susceptibility to INSTIs. Viruses. 2020; 12(8): 838. https://doi.org/10.3390/v12080838
  62. Marcelin A.G., Charpentier C., Jary A., Perrier M., Margot N., Callebaut C., et al. Frequency of capsid substitutions associated with GS-6207 in vitro resistance in HIV-1 from antiretroviral-naive and -experienced patients. J. Antimicrob. Chemother. 2020; 75(6): 1588–90. https://doi.org/10.1093/jac/dkaa060
  63. Grobler J.A., Huang Q., Hazuda D., Lai M. Efficacy of MK-8591м against diverse HIV-1 subtypes and NRTI-resistant clinical isolates. In: International Congress of Drug Therapy in HIV Infection (HIV Glasgow). Glasgow; 2018.
  64. Celum C., Baeten J.M. Tenofovir-based pre-exposure prophylaxis for HIV prevention: evolving evidence. Curr. Opin. Infect. Dis. 2012; 25(1): 51–7. https://doi.org/10.1097/QCO.0b013e32834ef5ef
  65. Grant R.M., Lama J.R., Anderson P.L., McMahan V., Liu A.Y., Vargas L., et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N. Engl. J. Med. 2010; 363(27): 2587–99. https://doi.org/10.1056/NEJMoa1011205
  66. Andrei G., Lisco A., Vanpouille C., Introini A., Balestra E., van den Oord J., et al. Topical tenofovir, a microbicide effective against HIV, inhibits herpes simplex virus-2 replication. Cell Host Microbe. 2011; 10(4): 379–89. https://doi.org/10.1016/j.chom.2011.08.015
  67. Gibas K.M., van den Berg P., Powell V.E., Krakower D.S. Drug resistance during HIV pre-exposure prophylaxis. Drugs. 2019; 79(6): 609–19. https://doi.org/10.1007/s40265-019-01108-x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Ozhmegova E.N., Bobkova M.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».