Молекулярные методы диагностики новой коронавирусной инфекции: сравнение петлевой изотермической амплификации и полимеразной цепной реакции

Обложка

Цитировать

Полный текст

Аннотация

Введение. В настоящее время основой молекулярной диагностики большинства инфекционных заболеваний является использование полимеразной цепной реакции с обратной транскрипцией (ОТ-ПЦР; reverse transcription polymerase chain reaction, RT-PCR). Альтернативой этому методу при решении диагностических задач могут выступать технологии, основанные на петлевой изотермической амплификации с обратной транскрипцией (ОТИТ; reverse transcription loop-mediated isothermal amplifcation, RT-LAMP). В данном исследовании нами выполнено сравнение ОТ-ИТ и ОТ-ПЦР с целью анализа как преимуществ, так и недостатков обоих подходов.

Материал и методы. При проведении экспериментов использованы наборы реагентов, предназначенные для анализа на основе ОТ-ПЦР и ОТ-ИТ. В работе использовался биологический материал, полученный из мазков со слизистой оболочки рото- и носоглотки у лиц с симптомами новой коронавирусной инфекции.

Результаты. В ходе исследования протестирован 381 образец РНК вируса SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) от различных пациентов. Полученные значения порогового числа циклов (cycle threshold, Ct) для ОТ-ПЦР составили в среднем 20,0 ± 3,7 (диапазон 1530 ± 300 с), для ОТ-ИТ – 12,8 ± 3,7 (диапазон 550 ± 160 с). Исходя из теоретических предпосылок, в качестве гипотетической была предложена линейная зависимость представленных величин; коэффициент корреляции составил ≈0,827. При этом для проб с низкой вирусной нагрузкой (ВН) более высокие значения Ct при ОТ-ИТ не всегда соответствовали таковым в случае ОТ-ПЦР.

Обсуждение. Мы отметили существенное преимущество во времени при выполнении анализа с помощью ОТ-ИТ по сравнению с ОТ-ПЦР, что может быть важно в условиях тестирования большого количества образцов. Разработанные на основе методики ОТ-ИТ тест-системы в силу простоты в использовании и относительной быстроты получения результата могут быть применены в процессе массового скрининга с целью выявления лиц со средней и высокой ВН, представляющих наибольшую угрозу распространения SARS-CoV-2. В свою очередь, диагностические методы на базе ОТ-ПЦР подходят в том числе для оценки ВН и её динамики у пациентов c COVID-19.

Об авторах

В. Г. Акимкин

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0003-4228-9044

111123, Москва, Россия

Россия

В. В. Петров

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0002-3503-2366

111123, Москва, Россия

Россия

К. В. Красовитов

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0001-7237-1810

111123, Москва, Россия

Россия

Н. И. Борисова

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0002-9672-0648

111123, Москва, Россия

Россия

И. А. Котов

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0003-2416-5689

111123, Москва, Россия

Россия

Е. Н. Родионова

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0003-0192-1832

111123, Москва, Россия

Россия

А. С. Черкашина

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0002-1888-4903

111123, Москва, Россия

Россия

Л. Ю. Кондрашева

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0002-0147-4262

111123, Москва, Россия

Россия

Е. В. Тиванова

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Email: fake@neicon.ru
ORCID iD: 0000-0003-1286-2612

111123, Москва, Россия

Россия

К. Ф. Хафизов

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор)

Автор, ответственный за переписку.
Email: kkhafizov@gmail.com
ORCID iD: 0000-0001-5524-0296

Хафизов Камиль Фаридович, канд. биол. наук, руководитель научной группы разработки новых методов диагностики на основе технологий секвенирования следующего поколения отдела молекулярной диагностики и эпидемиологии

111123, Москва, Россия

Россия

Список литературы

  1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13): 1239–42. https://doi.org/10.1001/jama.2020.2648
  2. Sharfstein J.M., Becker S.J., Mello M.M. Diagnostic Testing for the Novel Coronavirus. JAMA. 2020; 323(15): 1437–8. https://doi.org/10.1001/jama.2020.3864
  3. Drosten C., Göttig S., Schilling S., Asper M., Panning M., Schmitz H., et al. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J. Clin. Microbiol. 2002; 40(4): 2323–30. https://doi.org/10.1128/jcm.40.7.2323-2330.2002
  4. Mackay I.M., Arden K.E., Nitsche A. Real-time PCR in virology. Nucleic Acids Res. 2002; 30(6): 1292–305. https://doi.org/10.1093/nar/30.6.1292
  5. Tahamtan A., Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev. Mol. Diagn. 2020; 20(5): 453–4. https://doi.org/10.1080/14737159.2020.1757437
  6. Lu R., Wu X., Wan Z., Li Y., Zuo L., Qin J., et al. Development of a novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. Virol. Sin. 2020; 35(3):344–7. https://doi.org/10.1007/s12250-020-00218-1
  7. Jiang M., Pan W., Arasthfer A., Fang W., Ling L., Fang H., et al. Development and validation of a rapid, single-step reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) system potentially to be used for reliable and high-throughput screening of COVID-19. Front. Cell Infect. Microbiol. 2020; 10: 331. https://doi.org/10.3389/fcimb.2020.00331
  8. Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000; 28(12): E63. https://doi.org/10.1093/nar/28.12.e63
  9. Хафизов К.Ф., Петров В.В., Красовитов К.В., Золкина М.В., Акимкин В.Г. Экспресс-диагностика новой коронавирусной инфекции с помощью реакции петлевой изотермической амплификации. Вопросы вирусологии. 2021; 66(1): 17–28. https://doi.org/10.36233/0507-4088-42
  10. Parida M., Posadas G., Inoue S., Hasebe F., Morita K. Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J. Clin. Microbiol. 2004; 42(1):257–63. https://doi.org/10.1128/jcm.42.1.257-263.2004
  11. Zhao Y., Chen F., Li Q., Wang L., Fan C. Isothermal amplification of nucleic acids. Chem. Rev. 2015; 115(22): 12491–545. https://doi.org/10.1021/acs.chemrev.5b00428
  12. Bruno A., de Mora D., Freire-Paspuel B., Rodriguez A.S., Paredes- Espinosa M.B., Olmedo M., et al. Analytical and clinical evaluation of a heat shock SARS-CoV-2 detection method without RNA extraction for N and E genes RT-qPCR. Int. J. Infect. Dis. 2021; 109: 315–20. https://doi.org/10.1016/j.ijid.2021.06.038
  13. Lalli M.A., Langmade J.S., Chen X., Fronick C.C., Sawyer C.S., Burcea L.C., et al. Rapid and Extraction-Free Detection of SARS-CoV-2 from Saliva by Colorimetric Reverse-Transcription Loop-Mediated Isothermal Amplification. Clin. Chem. 2021; 67(2):415–24. https://doi.org/10.1093/clinchem/hvaa267
  14. Anastasiou O.E., Holtkamp C., Schäfer M., Schön F., Eis-Hübinger A.M., Krumbholz A. Fast Detection of SARS-CoV-2 RNA Directly from Respiratory Samples Using a Loop-Mediated Isothermal Amplification (LAMP) Test. Viruses. 2021; 13. https://doi.org/10.3390/v13050801
  15. Thompson D., Lei Y. Mini review: Recent progress in RT-LAMP enabled COVID-19 detection. Sensors and Actuators Reports. 2020; 2: 100017. http://dx.doi.org/10.1016/j.snr.2020.100017
  16. Borisova N.I., Kotov I.A., Kolesnikov A.A., Kaptelova V.V., Speranskaya A.S., Kondrasheva L.Yu., et al. Monitoring the spread of the SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) variants in the Moscow region using targeted high-throughput sequencing. Voprosy Virusologii. 2021; 66(4):269–78. https://doi.org/10.36233/0507-4088-72
  17. Cevik M., Tate M., Lloyd O., Maraolo A.E., Schafers J., Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2021; 2(1): e13–22. https://doi.org/10.1016/s2666-5247(20)30172-5
  18. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229):1054–62. https://doi.org/10.1016/s0140-6736(20)30566-3
  19. La Scola B., Le Bideau M., Andreani J., Hoang V.T., Grimaldier C., Colson P., et al. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur. J. Clin. Microbiol. Infect. Dis. 2020; 39(6): 1059–61. https://doi.org/10.1007/s10096-020-03913-9
  20. Bullard J., Dust K., Funk D., Strong J.E., Alexander D., Garnett L., et al. Predicting infectious severe acute respiratory syndrome coronavirus 2 from diagnostic samples. Clin. Infect. Dis. 2020; 71(10):2663–6. https://doi.org/10.1093/cid/ciaa638
  21. Mora-Cárdenas E., Marcello A. Switch-on the LAMP to spot Zika. Ann. Transl. Med. 2017; 5(24): 500. https://doi.org/10.21037/atm.2017.10.19
  22. Augustine R., Hasan A., Das S., Ahmed R., Mori Y., Notomi T., et al. Loop-mediated isothermal amplification (LAMP): A rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. Biology (Basel). 2020; 9(8): 182. https://doi.org/10.3390/biology9080182
  23. Rabe B.A., Cepko C. SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proc. Natl. Acad. Sci. USA. 2020; 117(39):24450–8. https://doi.org/10.1073/pnas.2011221117
  24. Yu L., Wu S., Hao X., Dong X., Mao L., Pelechano V., et al. Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. Clin. Chem. 2020; 66(7): 975–7. https://doi.org/10.1093/clinchem/hvaa102

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Акимкин В.Г., Петров В.В., Красовитов К.В., Борисова Н.И., Котов И.А., Родионова Е.Н., Черкашина А.С., Кондрашева Л.Ю., Тиванова Е.В., Хафизов К.Ф., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».