Molecular methods for diagnosing novel coronavirus infection: comparison of loop-mediated isothermal amplification and polymerase chain reaction

Cover Image

Cite item

Abstract

Introduction. Currently, the basis for molecular diagnostics of most infections is the use of reverse transcription polymerase chain reaction (RT-PCR). Technologies based on reverse transcription isothermal loop amplification (RT-LAMP) can be used as an alternative to RT-PCR for diagnostic purposes. In this study, we compared the RTLAMP and RT-PCR methods in order to analyze both the advantages and disadvantages of the two approaches.

Material and methods. For the study, we used reagent kits based on RT-PCR and RT-LAMP. The biological material obtained by taking swabs from the mucous membrane of the oropharynx and nasopharynx in patients with symptoms of a new coronavirus infection was used.

Results. We tested 381 RNA samples of the SARS-CoV-2 virus (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) from various patients. The obtained values of the threshold cycle (Ct) for RT-PCR averaged 20.0 ± 3.7 s (1530 ± 300 s), and for RT-LAMP 12.8 ± 3.7 s (550 ± 160 s). Proceeding from the theoretical assumptions, a linear relationship between values obtained in two kits was proposed as a hypothesis; the correlation coefficient was approximately 0.827. At the same time, for samples with a low viral load (VL), the higher Ct values in RT-LAMP did not always correlated with those obtained in RT-PCR.

Discussion. We noted a significant gain in time for analysis using RT-LAMP compared to RT-PCR, which can be important in the context of testing a large number of samples. Being easy to use and boasting short turnaround time, RT-LAMP-based test systems can be used for mass screening in order to identify persons with medium and high VLs who pose the greatest threat of the spread of SARS-CoV-2, while RT-PCR-based diagnostic methods are also suitable for estimation of VL and its dynamics in patients with COVID-19.

About the authors

V. G. Akimkin

FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: fake@neicon.ru
ORCID iD: 0000-0003-4228-9044

Moscow, 111123, Russia

Russian Federation

V. V. Petrov

FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: fake@neicon.ru
ORCID iD: 0000-0002-3503-2366

Moscow, 111123, Russia

Russian Federation

K. V. Krasovitov

FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: fake@neicon.ru
ORCID iD: 0000-0001-7237-1810

Moscow, 111123, Russia

Russian Federation

N. I. Borisova

FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: fake@neicon.ru
ORCID iD: 0000-0002-9672-0648

Moscow, 111123, Russia

Russian Federation

I. A. Kotov

FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: fake@neicon.ru
ORCID iD: 0000-0003-2416-5689

Moscow, 111123, Russia

Russian Federation

E. N. Rodionova

FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: fake@neicon.ru
ORCID iD: 0000-0003-0192-1832

Moscow, 111123, Russia

Russian Federation

A. S. Cherkashina

FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: fake@neicon.ru
ORCID iD: 0000-0002-1888-4903

Moscow, 111123, Russia

Russian Federation

L. Yu. Kondrasheva

FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: fake@neicon.ru
ORCID iD: 0000-0002-0147-4262

Moscow, 111123, Russia

Russian Federation

E. V. Tivanova

FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: fake@neicon.ru
ORCID iD: 0000-0003-1286-2612

Moscow, 111123, Russia

Russian Federation

K. F. Khafizov

FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Author for correspondence.
Email: kkhafizov@gmail.com
ORCID iD: 0000-0001-5524-0296

Kamil’ F. Khafizov, Ph.D. (Biol.), Head, Scientific Group for the Development of New Diagnostic Methods, Molecular Diagnostics and Epidemiology Department

Moscow, 111123, Russia

Russian Federation

References

  1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13): 1239–42. https://doi.org/10.1001/jama.2020.2648
  2. Sharfstein J.M., Becker S.J., Mello M.M. Diagnostic Testing for the Novel Coronavirus. JAMA. 2020; 323(15): 1437–8. https://doi.org/10.1001/jama.2020.3864
  3. Drosten C., Göttig S., Schilling S., Asper M., Panning M., Schmitz H., et al. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J. Clin. Microbiol. 2002; 40(4): 2323–30. https://doi.org/10.1128/jcm.40.7.2323-2330.2002
  4. Mackay I.M., Arden K.E., Nitsche A. Real-time PCR in virology. Nucleic Acids Res. 2002; 30(6): 1292–305. https://doi.org/10.1093/nar/30.6.1292
  5. Tahamtan A., Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev. Mol. Diagn. 2020; 20(5): 453–4. https://doi.org/10.1080/14737159.2020.1757437
  6. Lu R., Wu X., Wan Z., Li Y., Zuo L., Qin J., et al. Development of a novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. Virol. Sin. 2020; 35(3):344–7. https://doi.org/10.1007/s12250-020-00218-1
  7. Jiang M., Pan W., Arasthfer A., Fang W., Ling L., Fang H., et al. Development and validation of a rapid, single-step reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) system potentially to be used for reliable and high-throughput screening of COVID-19. Front. Cell Infect. Microbiol. 2020; 10: 331. https://doi.org/10.3389/fcimb.2020.00331
  8. Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000; 28(12): E63. https://doi.org/10.1093/nar/28.12.e63
  9. Хафизов К.Ф., Петров В.В., Красовитов К.В., Золкина М.В., Акимкин В.Г. Экспресс-диагностика новой коронавирусной инфекции с помощью реакции петлевой изотермической амплификации. Вопросы вирусологии. 2021; 66(1): 17–28. https://doi.org/10.36233/0507-4088-42
  10. Parida M., Posadas G., Inoue S., Hasebe F., Morita K. Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J. Clin. Microbiol. 2004; 42(1):257–63. https://doi.org/10.1128/jcm.42.1.257-263.2004
  11. Zhao Y., Chen F., Li Q., Wang L., Fan C. Isothermal amplification of nucleic acids. Chem. Rev. 2015; 115(22): 12491–545. https://doi.org/10.1021/acs.chemrev.5b00428
  12. Bruno A., de Mora D., Freire-Paspuel B., Rodriguez A.S., Paredes- Espinosa M.B., Olmedo M., et al. Analytical and clinical evaluation of a heat shock SARS-CoV-2 detection method without RNA extraction for N and E genes RT-qPCR. Int. J. Infect. Dis. 2021; 109: 315–20. https://doi.org/10.1016/j.ijid.2021.06.038
  13. Lalli M.A., Langmade J.S., Chen X., Fronick C.C., Sawyer C.S., Burcea L.C., et al. Rapid and Extraction-Free Detection of SARS-CoV-2 from Saliva by Colorimetric Reverse-Transcription Loop-Mediated Isothermal Amplification. Clin. Chem. 2021; 67(2):415–24. https://doi.org/10.1093/clinchem/hvaa267
  14. Anastasiou O.E., Holtkamp C., Schäfer M., Schön F., Eis-Hübinger A.M., Krumbholz A. Fast Detection of SARS-CoV-2 RNA Directly from Respiratory Samples Using a Loop-Mediated Isothermal Amplification (LAMP) Test. Viruses. 2021; 13. https://doi.org/10.3390/v13050801
  15. Thompson D., Lei Y. Mini review: Recent progress in RT-LAMP enabled COVID-19 detection. Sensors and Actuators Reports. 2020; 2: 100017. http://dx.doi.org/10.1016/j.snr.2020.100017
  16. Borisova N.I., Kotov I.A., Kolesnikov A.A., Kaptelova V.V., Speranskaya A.S., Kondrasheva L.Yu., et al. Monitoring the spread of the SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) variants in the Moscow region using targeted high-throughput sequencing. Voprosy Virusologii. 2021; 66(4):269–78. https://doi.org/10.36233/0507-4088-72
  17. Cevik M., Tate M., Lloyd O., Maraolo A.E., Schafers J., Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2021; 2(1): e13–22. https://doi.org/10.1016/s2666-5247(20)30172-5
  18. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229):1054–62. https://doi.org/10.1016/s0140-6736(20)30566-3
  19. La Scola B., Le Bideau M., Andreani J., Hoang V.T., Grimaldier C., Colson P., et al. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur. J. Clin. Microbiol. Infect. Dis. 2020; 39(6): 1059–61. https://doi.org/10.1007/s10096-020-03913-9
  20. Bullard J., Dust K., Funk D., Strong J.E., Alexander D., Garnett L., et al. Predicting infectious severe acute respiratory syndrome coronavirus 2 from diagnostic samples. Clin. Infect. Dis. 2020; 71(10):2663–6. https://doi.org/10.1093/cid/ciaa638
  21. Mora-Cárdenas E., Marcello A. Switch-on the LAMP to spot Zika. Ann. Transl. Med. 2017; 5(24): 500. https://doi.org/10.21037/atm.2017.10.19
  22. Augustine R., Hasan A., Das S., Ahmed R., Mori Y., Notomi T., et al. Loop-mediated isothermal amplification (LAMP): A rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. Biology (Basel). 2020; 9(8): 182. https://doi.org/10.3390/biology9080182
  23. Rabe B.A., Cepko C. SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proc. Natl. Acad. Sci. USA. 2020; 117(39):24450–8. https://doi.org/10.1073/pnas.2011221117
  24. Yu L., Wu S., Hao X., Dong X., Mao L., Pelechano V., et al. Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. Clin. Chem. 2020; 66(7): 975–7. https://doi.org/10.1093/clinchem/hvaa102

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Akimkin V.G., Petrov V.V., Krasovitov K.V., Borisova N.I., Kotov I.A., Rodionova E.N., Cherkashina A.S., Kondrasheva L.Y., Tivanova E.V., Khafizov K.F.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».