The potential of synthetic small interfering RNA-based antiviral drugs for influenza treatment

封面图片

如何引用文章

全文:

详细

Influenza is a worldwide public health problem. Annually, this infection affects up to 15% of the world population; and about half a million people die from this disease every year. Moreover, influenza A and B viruses tend to garner most of the attention, as these types are a major cause of the epidemics and pandemics. Although the influenza virus primarily affects the respiratory tract, it may also affect the cardiovascular and central nervous systems. Several antiviral drugs, that target various stages of viral reproduction, have been considered effective for the treatment and prevention of influenza, but some virus strains become resistant to these medications. Thus, new strategies and techniques should be developed to overcome the antiviral drug resistance. Recent studies suggest that new drugs based on RNA interference (RNAi) appear to be a promising therapeutic approach that regulates the activity of viral or cellular genes. As it is known, the RNAi is a eukaryotic gene regulatory mechanism that can be triggered by a foreign double-stranded RNA (dsRNA) and results in the cleavage of the target messenger RNA (mRNA). This review discusses the prospects, advantages, and disadvantages of using RNAi in carrying out a specific treatment for influenza infection. However, some viruses confer resistance to small interfering RNAs (siRNA) targeting viral genes. This problem can significantly reduce the effectiveness of RNAi. Therefore, applying siRNAs targeting host cell factors required for influenza virus reproduction can be a way to overcome the antiviral drug resistance.

作者简介

E. Pashkov

I.M. Sechenov First Moscow State Medical University (Sechenov University); I.I. Mechnikov Research Institute for Vaccines and Sera

编辑信件的主要联系方式.
Email: pashckov.j@yandex.ru
ORCID iD: 0000-0002-5682-4581

Evgeny A. Pashkov – postgraduate of microbiology, virology and immunology department of Sechenov University; junior researcher of I. Mechnikov RI of Vaccines and Sera.

105064, Moscow

俄罗斯联邦

E. Faizuloev

I.I. Mechnikov Research Institute for Vaccines and Sera

Email: fake@neicon.ru
ORCID iD: 0000-0001-7385-5083

Evgeny B. Faizuloev – Ph. D., The Head of Molecular Virology of I. Mechnikov RI of Vaccines and Sera.

105064, Moscow

俄罗斯联邦

O. Svitich

I.M. Sechenov First Moscow State Medical University (Sechenov University); I.I. Mechnikov Research Institute for Vaccines and Sera

Email: fake@neicon.ru
ORCID iD: 0000-0003-1757-8389

Oxana A. Svitich – Corresponding member of RAS, MD, The head of I. Mechnikov RIof Vaccines and Sera; Professor of Microbiology, Virology and Immunology department of Sechenov University.

Moscow

俄罗斯联邦

O. Sergeev

I.M. Sechenov First Moscow State Medical University (Sechenov University); National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya

Email: fake@neicon.ru
ORCID iD: 0000-0003-3407-2224

Oleg V. Sergeev – MD, Professor of Microbiology, Virology and Immunology department of Sechenov University;leading researcher of Comparative virology department of Central RI for Epidemiology.

Moscow

俄罗斯联邦

V. Zverev

I.M. Sechenov First Moscow State Medical University (Sechenov University); I.I. Mechnikov Research Institute for Vaccines and Sera

Email: fake@neicon.ru
ORCID iD: 0000-0002-0017-1892

Vitaliy V. Zverev  – Corresponding Member of RAS, Doctor of Biological Sciences, Scientific Adviser of I. Mechnikov Research Institute of Vaccines and Sera; Professor, The Leader of Microbiology, Virology and Immunology department of Sechenov University.

Moscow 俄罗斯联邦

参考

  1. Peteranderl C., Herold S., Schmoldt C. Human influenza virus infections. Semin. Respir. Crit. Care Med. 2016; 37(4): 487-500. DOI: http://doi.org/10.1055/s-0036-1584801
  2. Cheng A.C., Holmes M., Dwyer D.E., Senanayake S., Cooley L., Irving L.B., et al. Influenza epidemiology in patients admitted to sentinel Australian hospitals in 2018: the Influenza Complications Alert Network (FluCAN). Commun. Dis. Intell. (2018). 2019; 43. DOI: http://doi/10.33321/cdi.2019.43.48
  3. Chekkoth S.M., Supreeth R.N., Valsala N., Kumar P., Raja R.S. Spontaneous pneumomediastinum in H1N1 infection: uncommon complication of a common infection. J. R. Coll Physicians. Edinb. 2019; 49(4): 298-300. DOI: http://doi.org/10.4997/JRCPE.2019.409.
  4. Mastrolia M.V., Rubino C., Resti M., Trapani S., Galli L. Characteristics and outcome of influenza-associated encephalopathy/ encephalitis among children in a tertiary pediatric hospital in Italy, 2017-2019. BMC Infect. Dis. 2019; 19(1): 1012. DOI: http://doi.org/10.1186/s12879-019-4636-5
  5. Taubenberger J.K., Kash J.C. Influenza virus evolution, host adaptation, and pandemic form. Cell Host Microbe. 2010; 7(6): 440-51. DOI: http://doi.org/10.1016/j.chom.2010.05.009
  6. Pinto L.H., Lamb R.A. The M2 proton channels of influenza A and B viruses. J. Biol. Chem. 2006; 281(14): 8997-9000. DOI: http://doi.org/10.1074/jbc.R500020200
  7. Wang J., Wu Y., Ma C., Fiorin G., Wang J., Pinto L.H., et al. Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc. Natl. Acad. Sci. USA. 2013; 110(4): 1315-20. DOI: http://doi.org/10.1073/pnas.1216526110
  8. Hurt A.C., Ernest J., Deng Y.M., Iannello P., Besselaar T.G., Birch C., et al. The emergence and spread of resistant influenza A (H1N1) viruses in Oceania, Southeast Asia and South Asia. Antiviral Res. 2009; (1): 90-3. DOI: http://doi.org/10.1016/j.antiviral.2009.03.003
  9. Hurt A.C. The epidemiology and spread of drug resistant human influenza viruses. Curr. Opin. Virol. 2014; (8): 22-9. DOI: http://doi.org/10.1016/j.coviro.2014.04.009
  10. Lampejo T. Influenza and antiviral resistance: an overview. Eur. J. Clin. Microbiol. Infect. Dis. 2020; 39(7): 1201-8. DOI: http://doi.org/10.1007/s10096-020-03840-9
  11. Киселев О.И., Малеев В.В., Деева Э.Г., Ленева И.А., Селькова Е.П., Осипова Е.А. и др. Клиническая эффективность препарата Арбидол (умифеновир) в терапии гриппа у взрослых: промежуточные результаты многоцентрового двойного слепого рандомизированного плацебо-контролируемого исследования АРБИТР. Терапевтический архив. 2015; 87(1): 88-96. DOI: http://doi.org/10.17116/terarkh201587188-96
  12. Leneva I.A., Russell R.J., Boriskin Y.S., Hay A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral Res. 2009; 81(2): 132-40. DOI: http://doi.org/10.1016/j.antiviral.2008.10.009
  13. Furuta Y., Takahashi K., Kuno-Maekawa M., Sangawa H., Uehara S., Kozaki K., et al. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother. 2005; 49(3): 981-6. DOI: http://doi.org/10.1128/AAC.49.3.981-986.2005
  14. Sleeman K., Mishin V.P., Deyde V.M., Furuta Y., Klimov A.I., Gubareva L.V. In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A (H1N1) viruses. Antimicrob. Agents Chemother. 2010; 54(6): 2517-24. DOI: http://doi.org/10.1128/AAC.01739-0954
  15. Goldhill D.H., Te Velthuis A.J.W., Fletcher R.A., Langat P, Zambon M., Lackenby A., et al. Barclayb. The mechanism of resistance to favipiravir in influenza. Proc. Natl. Acad. Sci. 2018; 115(45): 11613-8. DOI: http://doi.org/10.1073/pnas.1811345215
  16. Han J., Perez J., Schafer A., Cheng H., Peet N., Rong L., et al. Influenza virus: small molecule therapeutics and mechanisms of antiviral resistance. Curr. Med. Chem. 2018; 25(38): 5115-27. DOI: http://doi.org/10.2174/0929867324666170920165926
  17. Fire A.Z. Gene silencing by double-stranded RNA. Cell Death Differ. 2007; 14(12): 1998-2012. DOI: http://doi.org/10.1038/sj.sdd.4402253
  18. Fire A., Xu S.Q., Montgomery M.K., Kostas S.A., Driver S.E., Mel-lo C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391(6669): 806-11. DOI: http://doi.org/10.1002/hep.30594
  19. Park S., Park J., Kim E., Lee Y. The Capicua-ETV 5 axis regulates liver-resident memory CD 8+ T cell development and the pathogenesis of liver injury. Hepatology. 2019; 70(1): 358-71. DOI: http://doi.org/10.1002/hep.30594
  20. Vaucheret Х., Beclin С., Fagard М. Post-transcriptional gene silencing in plants. J. Cell Sci. 2001; 114(Pt. 17): 3083-91.
  21. Sharp P.A. RNA-interference - 2001. GenesDev. 2001; 15(5): 485-90. DOI: http://doi.org/10.1101/gad.880001
  22. Файзулоев Е.Б., Никонова А.А., Зверев В.В. Перспективы создания противовирусных препаратов на основе малых интерферирующих РНК. Вопросы вирусологии. 2013; (Спец. 1): 159-69.
  23. Haiyong H. RNA interference to knock down gene expression. Methods Mol. Biol. 2018; 1706: 293-302. DOI: https://doi.org/10.1007/978-1-4939-7471-9_16
  24. van der Ree M.H., van der Meer A.J., van Nuenen A.C., de Bruijne J., Ottosen S., Janssen H.L., et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment. Pharmacol. Ther. 2016; 43(1): 102-13. DOI: http://doi.org/10.1111/apt.13432
  25. Soriano V, Barreiro P., Benitez L., Pena J.M., de Mendoza C. New antivirals for the treatment of chronic hepatitis B. Expert Opin. In-vestig. Drugs. 2017; 26(7): 843-51. DOI: http://doi.org/101080/13543784.2017.1333105
  26. Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev. Med. Virology. 2018; 28(4): 1976. DOI: http://doi.org/10.1002/rmv.1976
  27. Ge Q., McManus M.T., Nguyen T., Shen C.H., Sharp P.A., Eisen H.N., et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. 2003; 100(5): 2718-23. DOI: http://doi.org/10.1073/pnas.0437841100
  28. Ge Q., Filip L., Bai A., Nguyen T., Eisen H.N., Chen J. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. 2004; 101(23): 8676-81. DOI: http://doi.org/10.1073/pnas.0402486101
  29. Zhiqiang W., Yaowu Y., Fan Y., Jian Y., Yongfeng H., Lina Z., et al. Effective siRNAs inhibit the replication of novel influenza A (H1N1) virus. Antiviral Res. 2010; 85(3): 559-61. DOI: http://doi.org/10.1016/j.antiviral.2009.12.010
  30. Sui H.Y., Zhao G.Y., Huang J.D., Jin D.Y., Yuen K.Y., Zheng B.J. Small interfering RNA targeting M2 gene induces effective and long-term inhibition of influenza A virus replication. PLoS One. 2009; 4(5): 5671. DOI: http://doi.org/10.1371/journal.pone.0005671
  31. Piasecka J., Lenartowicz E., Soszynska-Jozwiak M., Szutkowska B., Kierzek R., Kierzek E. RNA Secondary structure motifs of the influenza A virus as targets for siRNA-mediated RNA interference. Mol. Ther. Nucleic. Acids. 2020; 19: 627-42. DOI: http://doi.org/10.1016/j/omtn.2019.12.018
  32. Presloid J.B., Novella I.S. RNA viruses and RNAi: quasispecies implications for viral escape. Viruses. 2015; 7(6): 3226-40. DOI: http://doi.org/10.3390/v7062768
  33. Das A.T., Brummelkamp T.R., Westerhout E.M., Vink M., Madire-djo M., Bernards R., et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol. 2004; 78(5): 2601-5. DOI: http://doi.org/10.1128/jvi.78.5.2601-2605.2004
  34. Nikam R.R., Gore K.R. Journey of siRNA: clinical developments and targeted delivery. Nucleic. Acid Ther. 2018; 28(4): 209-24. DOI: http://doi.org/10.1089/nat.2017.0715
  35. Lyons D.M., Lauring A.S. Mutation and epistasis in influenza virus evolution. Viruses. 2018; 10(8): 407. DOI: http://doi.org/10.3390/v10080407
  36. Lesch M., Luckner M., Meyer M., Weege F., Gravenstein I., Raf-tery M., et al. RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathog. 2019; 15(3): e1007601. DOI: http://doi.org/101371/journal.ppat.1007601
  37. Konig R., Stertz S., Zhou Y., Inoue A., Hoffmann H.H., Bhattacha-ryya S., et al. Human host factors required for influenza virus replication. Nature. 2010; 46(7282): 813-7. DOI: http://doi.org/10.1038/nature08699
  38. Karlas A., Machuy N., Shin Y, Pleissner K.P., Artarini A., Heuer D., et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature. 2010; 463(7282): 818-22. DOI: http://doi.org/10.1038/nature08760
  39. Eierhoff T., Hrincius E.R., Rescher U., Ludwig S., Ehrhardt C. The Epidermal Growth Factor Receptor (EGFR) promotes uptake of influenza А viruses (IAV) into host cells. PLoS Pathog. 2010; 6(9): e1001099. DOI: http://doi.org/101371/journal.ppat1001099
  40. Estrin M.A., Hussein I.T.M., Puryear W.B., Kuan A.C., Artim S.C., Runstadler J.A. Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One. 2018; 13(5): e0197246. DOI: http://doi.org/10.1371/journal.pone.0197246
  41. Rupp J.C., Locatelli M., Grieser A., Ramos A., Campbell P.J., Yi H., et al. Host cell copper transporters CTR1 and ATP7A are important for Influenza A virus replication. Virol J. 2017; 14(1): 11. DOI: http://doi.org/10.1186/s12985-016-0671-7
  42. Feizi N., Mehrbod P., Romani B., Soleimanjahi H., Bamdad T., Feizi A., et al. Autophagy induction regulates influenza virus replication in a time-dependent manner. J. Med. Microbiol. 2017; 66(4): 536-41. DOI: http://doi.org/10.1099/jmm.0.000455
  43. Rossman J.S., Lamb R.A. Autophagy, apoptosis, and the influenza virus M2 protein. Cell Host Microbe. 2009; 6(4): 299-300. DOI: http://doi.org/10.1016/j.chom.2009.09.009
  44. Romanov J., Walczak M., Ibiricu I., Schuchner S., Ogris E., Kraft C., et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J. 2012; 31(22): 4304-17. DOI: http://doi.org/10.1038/emboj.2012.278
  45. Wang R., Zhu Y., Zhao J., Ren C., Li P., Chen H., et al. Autophagy Promotes Replication of Influenza A Virus In Vitro. J. Virol. 2019; 93(4): e01984-18. DOI: http://doi.org/10.1128/JVI.01984-18

补充文件

附件文件
动作
1. JATS XML

版权所有 © Problems of Virology, 2020

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».