Quantum chemical investigations of the mechanisms of carboand heterocycles assemblies based on acetylenes reactions in superbasic media

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The chemistry of acetylenes has received significant development in the context of the use of superbasic media in organic synthesis. The study of reaction mechanisms requires the use of a complex of chemical, physicochemical, and theoretical methods. This review presents the results of recent quantum-chemical studies on mechanisms of assemblies based on the reactions of acetylene and its derivatives occurring in superbasic media and yielding in the formation of complex deeply functionalized molecular structures, which are being developed at the Irkutsk Institute of Chemistry named after A.E. Favorsky SB RAS.

About the authors

N. M Vitkovskaya

Irkutsk State University

Email: vita@cc.isu.ru

V. B Orel

Irkutsk State University

V. B Kobychev

Irkutsk State University

A. S Bobkov

Irkutsk State University

References

  1. Alabugin I.V., Gold B. J. Org. Chem. 2013, 78, 7777-7784. doi: 10.1021/jo401091w
  2. Trotuş I.T., Zimmermann T., Schüth F. Chem. Rev. 2014, 114, 1761-1782. doi: 10.1021/cr400357r
  3. Voronin V.V., Ledovskaya M.S., Bogachenkov A.S., Rodygin K.S., Ananikov V.P. Molecules. 2018, 23, 2442. doi: 10.3390/molecules23102442
  4. Trofimov B.A. Curr. Org. Chem. 2002, 6, 1121-1162. doi: 10.2174/1385272023373581
  5. Trofimov B.A., Schmidt E.Y., Zorina N.V., Ivanova E.V., Ushakov I.A. J. Org. Chem. 2012, 77, 6880-6886. doi: 10.1021/jo301005p
  6. Trofimov B.A., Schmidt E.Y. Acc. Chem. Res. 2018, 51, 1117-1130. doi: 10.1021/acs.accounts.7b00618
  7. Bidusenko I.A., Schmidt E.Y., Ushakov I.A., Trofimov B.A. Eur. J. Org. Chem. 2018, 2018, 4845-4849. doi: 10.1002/ejoc.201800850
  8. Schmidt E.Y., Bidusenko I.A., Protsuk N.I., Demyanov Y.V., Ushakov I.A., Trofimov B.A. Eur. J. Org. Chem. 2019, 2019, 5875-5881. doi: 10.1002/ejoc.201900932
  9. Schmidt E.Y., Bidusenko I.A., Protsuk N.I., Demyanov Y.V., Ushakov I.A., Vashchenko A.V., Trofimov B.A. J. Org. Chem. 2020, 85, 3417-3425. doi: 10.1021/acs.joc.9b03192
  10. Bidusenko I.A., Schmidt E.Y., Protsuk N.I., Ushakov I.A., Vashchenko A.V., Afonin A.V., Trofimov B.A. Org. Lett. 2020, 22, 2611-2614. doi: 10.1021/acs.orglett.0c00564
  11. Bidusenko I.A., Schmidt E.Y., Ushakov I.A., Vashchenko A.V., Trofimov B.A. Org. Lett. 2021, 23, 4121-4126. doi: 10.1021/acs.orglett.1c01009
  12. Bidusenko I.A., Yu. Schmidt E., Protsuk N.I., Ushakov I.A., Trofimov B.A. Mendeleev Commun. 2023, 33, 24-26. doi: 10.1016/j.mencom.2023.01.007
  13. Bidusenko I.A., Schmidt E.Y., Ushakov I.A., Vashchenko A.V., Protsuk N.I., Orel V.B., Vitkovskaya N.M., Trofimov B.A. J. Org. Chem. 2022, 87, 12225-12239. doi: 10.1021/acs.joc.2c01372
  14. Трофимов Б.А., Гусарова Н.К. Усп. хим. 2007, 76, 550-570.
  15. Trofimov B.A., Gusarova N.K. Russ. Chem. Rev. 2007, 76, 507-527. doi: 10.1070/RC2007v076n06ABEH003712
  16. Exner J.H., Steiner E.C. J. Am. Chem. Soc. 1974, 96, 1782-1787. doi: 10.1021/ja00813a022
  17. Васильцов А.М., Трофимов Б.А., Амосова С.В. Изв. АН СССР. Сер. хим. 1987, 36, 1785-1791.
  18. Vasil'tsov A.M., Trofimov B.A., Amosova S.V. Bull. Acad. Sci. USSR Div. Chem. Sci. 1987, 36, 1653-1658. doi: 10.1007/BF00960125
  19. Vitkovskaya N.M., Orel V.B., Kobychev V.B., Bobkov A.S., Absalyamov D.Z., Trofimov B.A. Int. J. Quantum Chem. 2020, 120, 26158 (1-12). doi: 10.1002/qua.26158
  20. Tomasi J., Mennucci B., Cancès E. J. Mol. Struct. THEOCHEM. 1999, 464, 211-226. doi: 10.1016/S0166-1280(98)00553-3
  21. Vitkovskaya N.M., Larionova E.Y., Kobychev V.B., Kaempf N.V, Trofimov B.A. Int. J. Quantum Chem. 2011, 111, 2519-2524. doi: 10.1002/qua.22643
  22. Becke A.D. Phys. Rev. A. 1988, 38, 3098-3100. doi: 10.1103/PhysRevA.38.3098
  23. Lee C., Yang W., Parr R.G. Phys. Rev. B. 1988, 37, 785-789. doi: 10.1103/PhysRevB.37.785
  24. Grimme S. J. Chem. Phys. 2006, 124, 034108. doi: 10.1063/1.2148954
  25. Schwabe T., Grimme S. Phys. Chem. Chem. Phys. 2007, 9, 3397-3406. doi: 10.1039/b704725h
  26. Grimme S., Ehrlich S., Goerigk L. J. Comput. Chem. 2011, 32, 1456-1465. doi: 10.1002/jcc.21759
  27. Кобычев В.Б., Витковская Н.М., Клыба Н.С., Трофимов Б.А. Изв. АН, Сер. хим. 2002, 51, 713-720.
  28. Kobychev V.B., Vitkovskaya N.M., Klyba N.S., Trofimov B.A. Russ. Chem. Bull. 2002, 51, 774-782. doi: 10.1023/A:1016068313892
  29. Woodcock H.L., Schaefer H.F., Schreiner P.R. J. Phys. Chem. A. 2002, 106, 11923-11931. doi: 10.1021/jp0212895
  30. Navarro-Vázquez A. Beilstein J. Org. Chem. 2015, 11, 1441-1446. doi: 10.3762/bjoc.11.156
  31. Wheeler S.E., Moran A., Pieniazek S.N., Houk K.N. J. Phys. Chem. A. 2009, 113, 10376-10384. doi: 10.1021/jp9058565
  32. Wertz D.H. J. Am. Chem. Soc. 1980, 102, 5316-5322. doi: 10.1021/ja00536a033
  33. Abraham M.H. J. Am. Chem. Soc. 1981, 103, 6742-6744. doi: 10.1021/ja00412a036
  34. Cooper J., Ziegler T. Inorg. Chem. 2002, 41, 6614-6622. doi: 10.1021/ic020294k
  35. Vitkovskaya N.M., Kobychev V.B., Bobkov A.S., Orel V.B., Schmidt E.Y., Trofimov B.A. J. Org. Chem. 2017, 82, 12467-12476. doi: 10.1021/acs.joc.7b02263
  36. Kobychev V.B. J. Phys. Conf. Ser. 2021, 1847, 012054. doi: 10.1088/1742-6596/1847/1/012054
  37. Frisch M.J., Trucks G.W., Schlegel H., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, revision C.01 software. Gaussian Inc., 2010.
  38. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A.J., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16, revision C.01 software. Gaussian Inc., 2019.
  39. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. J. Comput. Chem. 1993, 14, 1347-1363. doi: 10.1002/jcc.540141112
  40. Трофимов Б.А., Михалева А.И. ХГС. 1980, 1299-1312.
  41. Trofimov B.A., Mikhaleva A.I. Chem. Heterocycl. Compd. 1980, 16, 979-991. doi: 10.1007/BF00496592
  42. Sączewski J., Fedorowicz J., Gdaniec M., Wiśniewska P., Sieniawska E., Drażba Z., Rzewnicka J., Balewski Ł. J. Org. Chem. 2017, 82, 9737-9743. doi: 10.1021/acs.joc.7b01851
  43. Ларионова Е.Ю., Витковская Н.М., Кобычев В.Б., Скитневская А.Д., Шмидт Е.Ю., Трофимов Б.А. Докл. АН. 2011, 438, 765-767.
  44. Larionova E.Y., Vitkovskaya N.M., Kobychev V.B., Skitnevskaya A.D., Shmidt E.Y., Trofimov B.A. Dokl. Chem. 2011, 438, 167-169. doi: 10.1134/S001250081106005X
  45. Шагун В.А., Васильцов А.М., Иванов А.В., Михалева А.И., Трофимов Б.А. ЖСХ. 2013, 54, 25-33.
  46. Shagun V.A., Vasil'tsov A.M., Ivanov A. V., Mikhaleva A.I., Trofimov B.A. J. Struct. Chem. 2013, 54, 17-25. doi: 10.1134/S0022476613010034
  47. Shabalin D.A., Dvorko M.Y., Schmidt E.Y., Ushakov I.A., Protsuk N.I., Kobychev V.B., Soshnikov D.Y., Trofimov A.B., Vitkovskaya N.M., Mikhaleva A.I., Trofimov B.A. Tetrahedron. 2015, 71, 3273-3281. doi: 10.1016/j.tet.2015.03.111
  48. Kuzmin A.V., Shabalin D.A. J. Phys. Org. Chem. 2018, 31, e3829. doi: 10.1002/poc.3829
  49. Bobkov A.S., Vitkovskaya N.M., Trofimov B.A. J. Org. Chem. 2020, 85, 6463-6470. doi: 10.1021/acs.joc.0c00353
  50. Васильцов А.М., Полубенцев Е.А., Михалева А.И., Трофимов Б.А. Известия АН СССР. Сер. хим. 1990, 39, 864-867.
  51. Vasil'tsov A.M., Polubentsev E.A., Mikhaleva A.I., Trofimov B.A. Bull. Acad. Sci. USSR Div. Chem. Sci. 1990, 39, 773-776. doi: 10.1007/BF00960344
  52. Schmidt E.Y., Semenova N.V., Ivanova E.V., Bidusenko I.A., Trofimov B.A. Mendeleev Commun. 2020, 30, 109-111. doi: 10.1016/j.mencom.2020.01.036
  53. Vitkovskaya N.M., Orel V.B., Absalyamov D.Z., Trofimov B.A. J. Org. Chem. 2020, 85, 10617-10627. doi: 10.1021/acs.joc.0c01185
  54. Vitkovskaya N.M., Bobkov A.S., Kuznetsova S.V., Shcherbakova V.S., Ivanov A.V. Chempluschem. 2020, 85, 88-100. doi: 10.1002/cplu.201900407
  55. Ivanov A.V., Bobkov A.S., Martynovskaya S.V., Budaev A.B., Vitkovskaya N.M. Asian J. Org. Chem. 2023. doi: 10.1002/ajoc.202300153
  56. Vandavasi J.K., Hu W.-P., Senadi G.C., Boominathan S.S.K., Chen H.-Y., Wang J.-J. Eur. J. Org. Chem. 2014, 2014, 6219-6226. doi: 10.1002/ejoc.201402818
  57. Abbiati G., Canevari V., Caimi S., Rossi E. Tetrahedron Lett. 2005, 46, 7117-7120. doi: 10.1016/j.tetlet.2005.08.102
  58. Vitkovskaya N.M., Orel V.B., Kobychev V.B., Schmidt E.Y., Trofimov B.A. Int. J. Quantum Chem. 2018, 118, e25689 (1-10). doi: 10.1002/qua.25689
  59. Orel V.B., Manzhueva A.A. Tetrahedron. 2021, 89, 132164. doi: 10.1016/j.tet.2021.132164
  60. Orel V.B., Vitkovskaya N.M. J. Phys. Conf. Ser. 2021, 1847, 012056. doi: 10.1088/1742-6596/1847/1/012056
  61. Kobychev V.B., Pradedova A.G., Trofimov B.A. J. Mol. Struct. 2021, 1246, 131185. doi: 10.1016/j.molstruc.2021.131185
  62. Schmidt E.Y., Tatarinova I.V, Ivanova E. V, Zorina N.V., Ushakov I.A., Trofimov B.A. Org. Lett. 2013, 15, 104-107. doi: 10.1021/ol303132u
  63. Bordwell F.G. Acc. Chem. Res. 1988, 21, 456-463. doi: 10.1021/ar00156a004
  64. Прадедова А.Г., Кобычев В.Б. ЖСХ. 2023, 64, 107402.
  65. Pradedova A.G., Kobychev V.B. J. Struct. Chem. 2023, 64, 386-397. doi: 10.1134/S0022476623030058
  66. Orel V.B., Zubarev A.A., Bidusenko I.A., Ushakov I.A., Vitkovskaya N.M. J. Org. Chem. 2023, 88, 7058-7069. doi: 10.1021/acs.joc.3c00333

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».