СИНТЕЗ И АНТИОКСИДАНТНЫЕ СВОЙСТВА 1,3,4-ОКСАДИАЗОЛЬНЫХ ПРОИЗВОДНЫХ БЕНЗОЙНЫХ И МОНОГИДРОКСИБЕНЗОЙНЫХ КИСЛОТ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

При взаимодействии гидразидов бензойных кислот с ортоэфирами карбоновых кислот были синтезированы 2-арил- и 2-арил-5-алкил-1,3,4-оксадиазолы, антирадикальное действие которых было изучено в реакции с 2,2-дифенил-1-пикрилгидразилом (DPPH•). В реакции с DPPH• фенолоксадиазолы проявили более высокую антирадикальную активность по сравнению с соответствующими моногидроксибензойными кислотами, за счет внутримолекулярного синергизма, осуществляющегося в результате совместного действия фенольного и оксадиазольного фрагментов в рамках одной молекулы, приводящего к резонансной стабилизации образующегося феноксильного радикала. Для 1,3,4-оксадиазолов, не содержащих в своем составе фенольный фрагмент и проявляющих более низкую антирадикальную активность по сравнению с фенолоксадиазолами, предложен механизм их антиоксидантного действия, который связан с образованием радикального аддукта.

Об авторах

И. Е. Михайлов

НИИ физической и органической химии Южного федерального университета

Email: mie@sfedu.ru
ORCID iD: 0000-0003-1820-4012
Ростов-на-Дону, Россия

Н. И. Белая

Донецкий государственный университет

ORCID iD: 0000-0003-3359-3239
Донецк, Россия

А. В. Белый

Донецкий государственный университет

ORCID iD: 0000-0001-6837-9211
Донецк, Россия

Ю. М. Артюшкина

НИИ физической и органической химии Южного федерального университета

ORCID iD: 0009-0009-1347-4479
Ростов-на-Дону, Россия

Г. А. Душенко

НИИ физической и органической химии Южного федерального университета

ORCID iD: 0000-0002-5455-8419
Ростов-на-Дону, Россия

В. И. Минкин

НИИ физической и органической химии Южного федерального университета

ORCID iD: 0000-0001-6096-503X
Ростов-на-Дону, Россия

Список литературы

  1. Chaaban I., El Khawass El S.M., Abd El Razik H.A., El Salamouni N.S., Ghareeb D.A., Abdel Wahab A.E. Monatsh Chem. 2018, 149, 127–139. https://doi.org/10.1007/s00706-017-1983-z
  2. Pisoschi A.M., Pop A. Eur. J. Med. Chem. 2015, 97, 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040
  3. Higgins L.G., Hayes J.D. Drug Metab. Rev. 2011, 43, 92–137. https://doi.org/10.3109/03602532.2011.567391
  4. Small D.M., Coombes J.S., Bennett N., Johnson D.W., Gobe G.C. Nephrology. 2012, 17, N 4, 311–321. https://doi.org/10.1111/j.1440-1797.2012.01572.x
  5. Griffiths K., Aggarwal B.B., Singh R.B., Buttar H.S., Wilson D., Meester F.D. Diseases. 2016, 4, 1–28. https://doi.org/10.3390/diseases4030028
  6. Lobo V., Patil A., Phatak A., Chandra N. Pharmacogn. Rev. 2010, 4, 118–126. https://doi.org/10.4103/0973-7847.70902
  7. Ali S., Kasoju S.N., Luthra A., Singh A., Sharanabasa-va H., Bora U. Food Res. Int. 2008, 41, 1–15. https://doi.org/10.1016/j.foodres.2007.10.001
  8. Mancuso C., Santangelo R. Food Chem. Toxicol. 2014, 65. 185–195. https://doi.org/10.1016/j.fct.2013.12.024
  9. AL Zahrani N.A., El-Shishtawy R.M., Asiri A.M. Eur. J. Med. Chem. 2020, 204, 112609. https://doi.org/10.1016/j.ejmech.2020.112609
  10. Harini S.T., Kumar H.V., Rangaswamy J., Naik N. Bioorg. Med. Chem. Lett. 2012, 22, 7588–7592. https://doi.org/10.1016/j.bmcl.2012.10.019
  11. Ivanovic´ N., Jovanovic´ L., Markovic´ Z., Marko-vic´ V., Joksovic´ M.D., Milenkovic´ D., Djurdjevic´ P.T., C´iric´ A., Joksovic L. ChemistrySelect. 2016, 1, 3870–3878. https://doi.org/10.1002/slct.201600738
  12. Takao K., Toda K., Saito T., Sugita Y. Chem. Pharm. Bull. 2017, 65, 1020–1027. https://doi.org/10.1248/cpb.c17-00416
  13. Luczynski M., Kudelko A. Appl. Sci. 2022, 12, 3756. https://doi.org/10.3390/app12083756
  14. Mikhailov I.E., Popov L.D., Tkachev V.V., Aldoshin S.M., Dushenko G.A., Revinskii Yu.V., Minkin V.I. J. Mol. Struct. 2018, 1157, 374–380. https://doi.org/10.1016/j.molstruc.2017.12.043
  15. Mikhailov I.E., Dushenko G.A., Gurskii M.E., Vikrischuk N.I., Popov L.D., Revinskii Yu.V., Lyssen-ko K.A., Minkin V.I. Polyhedron. 2019, 166, 73–82. https://doi.org/10.1016/j.poly.2019.03.044
  16. Михайлов И.Е., Артюшкина Ю.М., Душенко Г.А., Минкин В.И. Изв. АH. Сер. хим. 2020, 2302–2306.
  17. Paruch K., Popiołek Ł., Wujec M. Med. Ch. Res. 2020, 1–16. https://doi.org/10.1007/s00044-019-02463-w
  18. Rabie A.M. Chem. Biol. Interact. 2021, 343, 109480. https://doi.org/10.1016/j.cbi.2021.109480
  19. Rabie A.M. J. Mol. Struct. 2021, 1246, 131106. https://doi.org/10.1016/j.molstruc.2021.131106
  20. Guimaraes C.R., Boger D.L., Jorgensen W.L. J. Am. Chem. Soc. 2005, 127, 17377–17384. https://doi.org/10.1021/ja055438j
  21. Rana S.M., Islam M., Saeed H., Rafique H., Majid M., Aqeel M.T., Imtiaz F., Ashraf Z. Pharmaceuticals. 2023, 16, 1045. https://doi.org/10.3390/ph16071045
  22. Mihailović N., Marković V., Matić I.Z., Stanisavljević N.S., Jovanović Ž.S., Trifunović S., Joksović L. RSC Adv. 2017, 7, 8550–8560. https://doi.org/10.1039/c6ra28787e
  23. Shakir R.M., Ariffin A., Abdulla M.A. Molecules. 2014, 19, 3436–3449. https://doi.org/10.3390/molecules19033436
  24. Rabie A.M., Tantawy A.S., Badr S.M.I. Am. J. Org. Chem. 2016, 6, 54–80. https://doi.org/10.5923/j.ajoc.20160602.02
  25. Singh G., Rani S., Arora A., Aulakh D., Wriedt M. New J. Chem. 2016, 40, 6200–6213. https://doi.org/10.1039/C6NJ00011H
  26. Kumar B.N.P., Mohana K.N., Mallesha L., Harish K.P. Inter. J. Med. Chem. 2013, 2013, 725673. https://doi.org/10.1155/2013/725673
  27. Chandrakantha B., Shetty P., Nambiyar V., Isloor N., Isloor A.M. Eur. J. Med. Chem. 2010, 45, 1206–1210. https://doi.org/10.1016/j.ejmech.2009.11.046
  28. Ainsworth C. J. Am. Chem. Soc. 1955, 77, 1148–1150. https://doi.org/10.1021/ja01610a019
  29. Lagunin A., Zakharov A., Filimonov D., Poroikov V. Mol. Inform. 2011, 30, 241–250. https://doi.org/10.1002/minf.201000151
  30. Singh R.P., Murthy K.N.C., Jayaprakasha G.K. J. Agr. Food Chem. 2002, 50, 81–86. https://doi.org/10.1021/jf010865b
  31. Белая Н.И., Белый А.В., Давыдова А.А. Кинетика и катализ. 2020, 61, 789–796.
  32. Milenković D., Đorović J., Petrović V., Avdović E., Marković Z. Reac. Kinet. Mech. Cat. 2018, 123, 215–230. https://doi.org/10.1007/s11144-017-1286-8
  33. Pandithavidana D.R., Jayawardana S.B. Molecules. 2019, 24, 1646. https://doi.org/10.3390/molecules24091646
  34. Litwinienko G., Ingold K.U. J. Org. Chem. 2005, 70, 8982–8990. https://doi.org/10.1021/jo051474p
  35. Valgimigli L., Banks J.T., Ingold K.U., Lusztyk J. J. Am. Chem. Soc. 1995, 117, 9966–9971. https://doi.org/10.1021/ja00145a005
  36. Lu Y., Wang A.H., Shi P., Zhang H., Li Z.S. PLoS ONE. 2015, 10, 0133259. https://doi.org/10.1371/journal.pone.0133259
  37. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision E.01. Wallingford CT. 2013.
  38. Armarego W.L.F., Chai C.L.L. Purification of Laboratory Chemicals. Burlington: Elsevier Science. 2003, 69.
  39. Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации. М: ФИЗМАТЛИТ. 2005, 256–265.
  40. Михайлов И.Е., Артюшкина Ю.М., Душенко Г.А., Минкин В.И. Изв. АH. Сер. хим. 2020, 176–178.
  41. Михайлов И.Е., Артюшкина Ю.М., Душенко Г.А., Минкин В.И. ЖОХ. 2020, 90, 1680–1685.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).